filmov
tv
Session 22 - Vectorized String Operations | DateTime in Pandas | Pivot Table | DSMP 2022-23
![preview_player](https://i.ytimg.com/vi/UE6DmRQJ2w8/maxresdefault.jpg)
Показать описание
Data Science Mentorship Program (DSMP) 2022-23
-------------------------------------------------------------------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------------------------------------------------------------------
Datasets used in the session -
Notebook Links
--------------------------
-------------------------------------------------------------------------------------------------------------------------------------------------------
-----------------------
| Time stamp |
-----------------------
0:00 Start
6:26 #pivot_table
15:58 #aggfunc
19:27 #multidimensional pivot_table
23:29 #pivot_table margin
25:31 #plotting_graph
36:50 #pandas_string
37:53 # What are vectorized string operations
40:04 # problem in vectorized opertions in vanilla python
42:52 # How pandas solves this issue?
# Common Functions
46:21 lower/upper/capitalize/title
47:54 #len/strip
51:03 #split -- get
1:00:27 #replace
1:02:58 # filtering - # startswith/endswith isdigit/isalpha...
1:05:21 # applying regex
1:07:06 # find last names with start and end char vowel
1:10:47 # slicing
1:14:56 #pandas date_time
1:17:00 Creating Timestamp objects
1:25:31 # fetching attributes - year/month/day/
1:26:41 #why separate objects to handle data and time when python already has datetime functionality?
1:31:34 #DatetimeIndex Object
1:37:45 #date_range function
1:44:55 #to_datetime function
1:52:33 #date time accessor
1:53:41 #plotting
2:00:12 Doubt
-------------------------------------------------------------------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------------------------------------------------------------------
Datasets used in the session -
Notebook Links
--------------------------
-------------------------------------------------------------------------------------------------------------------------------------------------------
-----------------------
| Time stamp |
-----------------------
0:00 Start
6:26 #pivot_table
15:58 #aggfunc
19:27 #multidimensional pivot_table
23:29 #pivot_table margin
25:31 #plotting_graph
36:50 #pandas_string
37:53 # What are vectorized string operations
40:04 # problem in vectorized opertions in vanilla python
42:52 # How pandas solves this issue?
# Common Functions
46:21 lower/upper/capitalize/title
47:54 #len/strip
51:03 #split -- get
1:00:27 #replace
1:02:58 # filtering - # startswith/endswith isdigit/isalpha...
1:05:21 # applying regex
1:07:06 # find last names with start and end char vowel
1:10:47 # slicing
1:14:56 #pandas date_time
1:17:00 Creating Timestamp objects
1:25:31 # fetching attributes - year/month/day/
1:26:41 #why separate objects to handle data and time when python already has datetime functionality?
1:31:34 #DatetimeIndex Object
1:37:45 #date_range function
1:44:55 #to_datetime function
1:52:33 #date time accessor
1:53:41 #plotting
2:00:12 Doubt
Комментарии