filmov
tv
Alcohol fuel | Wikipedia audio article
Показать описание
This is an audio version of the Wikipedia Article:
00:01:48 1 Methanol and ethanol
00:11:14 2 Butanol and propanol
00:15:02 3 By country
00:15:11 3.1 Brazil
00:17:01 3.2 China
00:17:49 3.3 United States
00:19:05 3.4 European Union
00:19:14 3.5 Japan
Listening is a more natural way of learning, when compared to reading. Written language only began at around 3200 BC, but spoken language has existed long ago.
Learning by listening is a great way to:
- increases imagination and understanding
- improves your listening skills
- improves your own spoken accent
- learn while on the move
- reduce eye strain
Now learn the vast amount of general knowledge available on Wikipedia through audio (audio article). You could even learn subconsciously by playing the audio while you are sleeping! If you are planning to listen a lot, you could try using a bone conduction headphone, or a standard speaker instead of an earphone.
Listen on Google Assistant through Extra Audio:
Other Wikipedia audio articles at:
Upload your own Wikipedia articles through:
Speaking Rate: 0.885394433670599
Voice name: en-GB-Wavenet-D
"I cannot teach anybody anything, I can only make them think."
- Socrates
SUMMARY
=======
Alcohols have been used as a fuel. The first four aliphatic alcohols (methanol, ethanol, propanol, and butanol)
are of interest as fuels because they can be synthesized chemically or biologically, and they have characteristics which allow them to be used in internal combustion engines. The general chemical formula for alcohol fuel is CnH2n+1OH.
Most methanol is produced from natural gas, although it can be produced from biomass using very similar chemical processes. Ethanol is commonly produced from biological material through fermentation processes. Biobutanol has the advantage in combustion engines in that its energy density is closer to gasoline than the simpler alcohols (while still retaining over 25% higher octane rating); however, biobutanol is currently more difficult to produce than ethanol or methanol. When obtained from biological materials and/or biological processes, they are known as bioalcohols (e.g. "bioethanol"). There is no chemical difference between biologically produced and chemically produced alcohols.
One advantage shared by the four major alcohol fuels is their high octane rating. This tends to increase their fuel efficiency and largely offsets the lower energy density of vehicular alcohol fuels (as compared to petrol/gasoline and diesel fuels), thus resulting in comparable "fuel economy" in terms of distance per volume metrics, such as kilometers per liter, or miles per gallon.
00:01:48 1 Methanol and ethanol
00:11:14 2 Butanol and propanol
00:15:02 3 By country
00:15:11 3.1 Brazil
00:17:01 3.2 China
00:17:49 3.3 United States
00:19:05 3.4 European Union
00:19:14 3.5 Japan
Listening is a more natural way of learning, when compared to reading. Written language only began at around 3200 BC, but spoken language has existed long ago.
Learning by listening is a great way to:
- increases imagination and understanding
- improves your listening skills
- improves your own spoken accent
- learn while on the move
- reduce eye strain
Now learn the vast amount of general knowledge available on Wikipedia through audio (audio article). You could even learn subconsciously by playing the audio while you are sleeping! If you are planning to listen a lot, you could try using a bone conduction headphone, or a standard speaker instead of an earphone.
Listen on Google Assistant through Extra Audio:
Other Wikipedia audio articles at:
Upload your own Wikipedia articles through:
Speaking Rate: 0.885394433670599
Voice name: en-GB-Wavenet-D
"I cannot teach anybody anything, I can only make them think."
- Socrates
SUMMARY
=======
Alcohols have been used as a fuel. The first four aliphatic alcohols (methanol, ethanol, propanol, and butanol)
are of interest as fuels because they can be synthesized chemically or biologically, and they have characteristics which allow them to be used in internal combustion engines. The general chemical formula for alcohol fuel is CnH2n+1OH.
Most methanol is produced from natural gas, although it can be produced from biomass using very similar chemical processes. Ethanol is commonly produced from biological material through fermentation processes. Biobutanol has the advantage in combustion engines in that its energy density is closer to gasoline than the simpler alcohols (while still retaining over 25% higher octane rating); however, biobutanol is currently more difficult to produce than ethanol or methanol. When obtained from biological materials and/or biological processes, they are known as bioalcohols (e.g. "bioethanol"). There is no chemical difference between biologically produced and chemically produced alcohols.
One advantage shared by the four major alcohol fuels is their high octane rating. This tends to increase their fuel efficiency and largely offsets the lower energy density of vehicular alcohol fuels (as compared to petrol/gasoline and diesel fuels), thus resulting in comparable "fuel economy" in terms of distance per volume metrics, such as kilometers per liter, or miles per gallon.