filmov
tv
Tensorflow: 13 Linear Regression using Tensorflow
![preview_player](https://i.ytimg.com/vi/WTTgbH85WFw/maxresdefault.jpg)
Показать описание
import numpy as np
# === Create data and simulate results =====
w_real = [0.3,0.5,0.1]
b_real = -0.2
................................................................................................
import tensorflow as tf
................................................................................................
NUM_STEPS = 10
g = tf.Graph()
wb_ = []
learning_rate = .4
# Before starting, initialize the variables. We will 'run' this first.
for step in range(NUM_STEPS):
# === Create data and simulate results =====
w_real = [0.3,0.5,0.1]
b_real = -0.2
................................................................................................
import tensorflow as tf
................................................................................................
NUM_STEPS = 10
g = tf.Graph()
wb_ = []
learning_rate = .4
# Before starting, initialize the variables. We will 'run' this first.
for step in range(NUM_STEPS):