If tan(α+iβ)=x+iy , prove that (i)x²+²y+2xcot2α=1(ii) x²+y²-2ycothy+1=0, (iii) x. cot2α+ycoth2β=1

preview_player
Показать описание
If tan(α+iβ)=x+iy , prove that (i)x^2+y^2+2xcot2α=1(ii) x^2+y2-2ycothy+1=0, (iii) x. cot2α+ycoth2β=1
Рекомендации по теме
Комментарии
Автор

chapter -Hyperbolic functions
Ques- If x+iy=c tanh (u+iv), where x, y, c, u and v are all real, prove that x^2 + y^2 + c^2 - 2cx coth 2u=0
Sir please solve my doubt as early as possible🙏🙏🙏🙏🙏🙏🙏🙏🙏🙏🙏🙏🙏🙏🙏🙏🙏🙏🙏🙏🙏

Justfor_funn
Автор

heyy can u help im stuck on similar ques but couldnt find solution? if tan (x+y) = u+ iv then prove that u square +v square + 2ucot2x = 1

xen
Автор

Very less portion of your notebook's solution is visible on screen at a time, otherwise you are teaching good, sir.👍🏻

sonalisingh