filmov
tv
18MAT21_Module-3 #LCT 05 {PDE by eliminating functions 1)z=f(x+ay)+g(x-ay); 2)z=yf(x)+xg(y) }
![preview_player](https://i.ytimg.com/vi/7JLYPYK4ZmY/maxresdefault.jpg)
Показать описание
This video describes easily how to eliminate two functions and to form second-order PDE.
18MAT21 module-3(PDE)
18MAT21 : Module 3 Partial Differential Equations Class 5
18MAT21_Module-3 #LCT 05 {PDE by eliminating functions 1)z=f(x+ay)+g(x-ay); 2)z=yf(x)+xg(y) }
18MAT21 Module-3 Formation of PDE by eliminating arbitrary functions
Solution of Wave Eqation @18MAT21 Module 3 # LCT 17
Module-3: 18MAT21 (PDE)
18MAT21, Module 3 PDE_Part8
18MAT21:Derivation and solution of one dimensional heat equation
Formation of PDEs by eliminating arbitrary functions | VTU Mathematics | Module 3
Solution of one dimensional Heat equation || PDE || 21MAT21 || 18MAT21 || Dr Prashant Patil
Module -3 : PDE video -1
LCT 01@18mat21 _Module 03 # Formation of PDE by eliminating arbitrary constants.
Solution of Nonhomogeneous || Differential Equations || 18mat21 || Dr Prashant Patil
18MAT21 Module no 5
18MAT21_Module 3 # LCT 03 {Formation of PDE by eliminating arbitrary functions}
#8 || Problem#4 || Form a PDE by eliminating the arbitrary function of the equation𝒛=𝒆^𝒚 𝒇(𝒙+𝒚) ||...
vector integration 3 18MAT21 VTU SYLLABUS
Formation of PDE by eliminating arbitrary function | Part 3
#9 || Problem#5 || PDE by eliminating the arbitrary function of the equation 𝒛=𝒙+𝒚+𝒇(𝒙𝒚) || 18MAT21...
Orthogonality of analytic function in polar form || Complex Analysis || 18mat21 || Dr Prashant Patil
18MAT21 mod 5 numerical integration by Prof Akshata
18mat21/ module 2 / class 4
Derivation of 1-D Heat Equation
Example on One Dimensional Heat Equation || Numerical Methods || Dr Prashant Patil
Комментарии