filmov
tv
Merge Two pandas DataFrames in Python (6 Examples) | Inner, Outer, Left & Right Join | Combine Data
Показать описание
Python code of this video:
import pandas as pd # Import pandas
data1 = pd.DataFrame({"ID":range(101, 106), # Create first pandas DataFrame
"x1":range(1, 6),
"x2":["a", "b", "c", "d", "e"],
"x3":range(16, 11, - 1)})
print(data1) # Print first pandas DataFrame
data2 = pd.DataFrame({"ID":range(104, 108), # Create second pandas DataFrame
"y1":["x", "y", "x", "y"],
"y2":range(8, 1, - 2)})
print(data2) # Print second pandas DataFrame
data2,
on = "ID",
how = "inner")
print(data_inner) # Print merged DataFrame
data2,
on = "ID",
how = "outer")
print(data_outer) # Print merged DataFrame
data2,
on = "ID",
how = "left")
print(data_left) # Print merged DataFrame
data2,
on = "ID",
how = "right")
print(data_right) # Print merged DataFrame
data3 = pd.DataFrame({"ID":range(102, 110), # Create third pandas DataFrame
"z1":range(10, 18),
"z2":["z", "b", "z", "z", "d", "z", "d", "a"],
"z3":range(18, 10, - 1)})
print(data3) # Print third pandas DataFrame
from functools import reduce
data_multi = reduce(lambda left, right: # Merge three pandas DataFrames
on = ["ID"],
how = "outer"),
[data1, data2, data3])
print(data_multi) # Print merged DataFrame
data4 = pd.DataFrame({"a1":["yes", "no", "no", "yes", "yes"], # Create fourth pandas DataFrame
"a2":range(15, 20)},
index = list("abcde"))
print(data4) # Print fourth pandas DataFrame
data5 = pd.DataFrame({"b1":range(10, 5, - 1), # Create fifth pandas DataFrame
"b2":["b", "bb", "b", "bbb", "b"],
"b3":range(10, 1, - 2)},
index = list("cdefg"))
print(data5) # Print fifth pandas DataFrame
data5,
left_index = True,
right_index = True,
how = "outer")
print(data_index) # Print merged DataFrame
Follow me on Social Media:
import pandas as pd # Import pandas
data1 = pd.DataFrame({"ID":range(101, 106), # Create first pandas DataFrame
"x1":range(1, 6),
"x2":["a", "b", "c", "d", "e"],
"x3":range(16, 11, - 1)})
print(data1) # Print first pandas DataFrame
data2 = pd.DataFrame({"ID":range(104, 108), # Create second pandas DataFrame
"y1":["x", "y", "x", "y"],
"y2":range(8, 1, - 2)})
print(data2) # Print second pandas DataFrame
data2,
on = "ID",
how = "inner")
print(data_inner) # Print merged DataFrame
data2,
on = "ID",
how = "outer")
print(data_outer) # Print merged DataFrame
data2,
on = "ID",
how = "left")
print(data_left) # Print merged DataFrame
data2,
on = "ID",
how = "right")
print(data_right) # Print merged DataFrame
data3 = pd.DataFrame({"ID":range(102, 110), # Create third pandas DataFrame
"z1":range(10, 18),
"z2":["z", "b", "z", "z", "d", "z", "d", "a"],
"z3":range(18, 10, - 1)})
print(data3) # Print third pandas DataFrame
from functools import reduce
data_multi = reduce(lambda left, right: # Merge three pandas DataFrames
on = ["ID"],
how = "outer"),
[data1, data2, data3])
print(data_multi) # Print merged DataFrame
data4 = pd.DataFrame({"a1":["yes", "no", "no", "yes", "yes"], # Create fourth pandas DataFrame
"a2":range(15, 20)},
index = list("abcde"))
print(data4) # Print fourth pandas DataFrame
data5 = pd.DataFrame({"b1":range(10, 5, - 1), # Create fifth pandas DataFrame
"b2":["b", "bb", "b", "bbb", "b"],
"b3":range(10, 1, - 2)},
index = list("cdefg"))
print(data5) # Print fifth pandas DataFrame
data5,
left_index = True,
right_index = True,
how = "outer")
print(data_index) # Print merged DataFrame
Follow me on Social Media:
Комментарии