filmov
tv
Francesca Dominici: Data Science and Our Environment | IACS Seminar
Показать описание
Presented by Francesca Dominici, Professor of Biostatistics, Harvard T.H. Chan School of Public Health and Co-Director of the Data Science Initiative, Harvard University
Talk Description: What if I told you I had evidence of a serious threat to American national security – a terrorist attack in which a jumbo jet will be hijacked and crashed every 12 days. Thousands will continue to die unless we act now. This is the question before us today – but the threat doesn’t come from terrorists. The threat comes from climate change and air pollution.
Researchers have developed an artificial neural network model that uses on-the-ground air-monitoring data and satellite-based measurements to estimate daily pollution levels across the continental U.S., breaking the country up into 1-square-kilometer zones. They have paired that information with health data contained in Medicare claims records from the last 12 years, and for 97% of the population aged 65 or older. They have also developed statistical methods and computational efficient algorithms for the analysis over 460 million health records.
This type of data is the sign of a new era for the role of data science in public health, and also for the associated methodological challenges. For example, with enormous amounts of data, the threat of unmeasured confounding bias is amplified, and causality is even harder to assess with observational studies. Dr. Dominici will discuss these and other challenges.
Talk Description: What if I told you I had evidence of a serious threat to American national security – a terrorist attack in which a jumbo jet will be hijacked and crashed every 12 days. Thousands will continue to die unless we act now. This is the question before us today – but the threat doesn’t come from terrorists. The threat comes from climate change and air pollution.
Researchers have developed an artificial neural network model that uses on-the-ground air-monitoring data and satellite-based measurements to estimate daily pollution levels across the continental U.S., breaking the country up into 1-square-kilometer zones. They have paired that information with health data contained in Medicare claims records from the last 12 years, and for 97% of the population aged 65 or older. They have also developed statistical methods and computational efficient algorithms for the analysis over 460 million health records.
This type of data is the sign of a new era for the role of data science in public health, and also for the associated methodological challenges. For example, with enormous amounts of data, the threat of unmeasured confounding bias is amplified, and causality is even harder to assess with observational studies. Dr. Dominici will discuss these and other challenges.