Mei Chen - Using Open Source LLM in ETL | PyData NYC 2023

preview_player
Показать описание

This session will provide a case study of using Llama2-70b to tackle a data transformation friction point in reinsurance underwriting. The final approach of the solution is industry agnostic. We will walk through our thought framework for breaking down a business problem into LLM-able chunks, lay out the explored solutions and best performing method, compare local vs. at scale inference, and how we evaluated the unstructured LLM responses to prevent hallucination and ambiguity in getting structured response.

PyData is an educational program of NumFOCUS, a 501(c)3 non-profit organization in the United States. PyData provides a forum for the international community of users and developers of data analysis tools to share ideas and learn from each other. The global PyData network promotes discussion of best practices, new approaches, and emerging technologies for data management, processing, analytics, and visualization. PyData communities approach data science using many languages, including (but not limited to) Python, Julia, and R.

PyData conferences aim to be accessible and community-driven, with novice to advanced level presentations. PyData tutorials and talks bring attendees the latest project features along with cutting-edge use cases.

00:00 Welcome!
00:10 Help us add time stamps or captions to this video! See the description for details.

Рекомендации по теме
Комментарии
Автор

Very interesting talk and an interesting application. Is it used in production already? I can imagine feeding the model with applicant health data and asking questions to an LLM will be the future at some point ...

Some feedback to the speaker, can you please repeat the questions from the audience? People often ask interesting questions and get an expert response is very valuable :)

maratkopytjuk