filmov
tv
OpenAI Embeddings (and Controversy?!)

Показать описание
#mlnews #openai #embeddings
COMMENTS DIRECTLY FROM THE AUTHOR (thanks a lot for reaching out Arvind :) ):
3. Finally, I'm now working on time travel so that I can cite papers from the future :)
END COMMENTS FROM THE AUTHOR
OpenAI launches an embeddings endpoint in their API, providing high-dimensional vector embeddings for use in text similarity, text search, and code search. While embeddings are universally recognized as a standard tool to process natural language, people have raised doubts about the quality of OpenAI's embeddings, as one blog post found they are often outperformed by open-source models, which are much smaller and with which embedding would cost a fraction of what OpenAI charges. In this video, we examine the claims made and determine what it all means.
OUTLINE:
0:00 - Intro
0:30 - Sponsor: Weights & Biases
2:20 - What embeddings are available?
3:55 - OpenAI shows promising results
5:25 - How good are the results really?
6:55 - Criticism: Open models might be cheaper and smaller
10:05 - Discrepancies in the results
11:00 - The author's response
11:50 - Putting things into perspective
13:35 - What about real world data?
14:40 - OpenAI's pricing strategy: Why so expensive?
Sponsor: Weights & Biases
ERRATA: At 13:20 I say "better", it should be "worse"
References:
Links:
If you want to support me, the best thing to do is to share out the content :)
If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this):
Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq
Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2
Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m
Monero (XMR): 4ACL8AGrEo5hAir8A9CeVrW8pEauWvnp1WnSDZxW7tziCDLhZAGsgzhRQABDnFy8yuM9fWJDviJPHKRjV4FWt19CJZN9D4n
COMMENTS DIRECTLY FROM THE AUTHOR (thanks a lot for reaching out Arvind :) ):
3. Finally, I'm now working on time travel so that I can cite papers from the future :)
END COMMENTS FROM THE AUTHOR
OpenAI launches an embeddings endpoint in their API, providing high-dimensional vector embeddings for use in text similarity, text search, and code search. While embeddings are universally recognized as a standard tool to process natural language, people have raised doubts about the quality of OpenAI's embeddings, as one blog post found they are often outperformed by open-source models, which are much smaller and with which embedding would cost a fraction of what OpenAI charges. In this video, we examine the claims made and determine what it all means.
OUTLINE:
0:00 - Intro
0:30 - Sponsor: Weights & Biases
2:20 - What embeddings are available?
3:55 - OpenAI shows promising results
5:25 - How good are the results really?
6:55 - Criticism: Open models might be cheaper and smaller
10:05 - Discrepancies in the results
11:00 - The author's response
11:50 - Putting things into perspective
13:35 - What about real world data?
14:40 - OpenAI's pricing strategy: Why so expensive?
Sponsor: Weights & Biases
ERRATA: At 13:20 I say "better", it should be "worse"
References:
Links:
If you want to support me, the best thing to do is to share out the content :)
If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this):
Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq
Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2
Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m
Monero (XMR): 4ACL8AGrEo5hAir8A9CeVrW8pEauWvnp1WnSDZxW7tziCDLhZAGsgzhRQABDnFy8yuM9fWJDviJPHKRjV4FWt19CJZN9D4n
Комментарии