filmov
tv
Deep Learning(CS7015): Lec 4.2 Learning Paramters of Feedforward Neural Networks (Intuition)
Показать описание
lec04mod02
Deep Learning(CS7015): Lec 4.2 Learning Paramters of Feedforward Neural Networks (Intuition)
Deep Learning(CS7015): Lec 2.4 Error and Error Surfaces
Deep Learning(CS7015): Lec 4.1 Feedforward Neural Networks (a.k.a multilayered network of neurons)
Deep Learning(CS7015): Lec 2.8 Representation Power of a Network of Perceptrons
Deep Learning(CS7015): Lec 3.4 Learning Parameters: Gradient Descent
Deep Learning(CS7015): Lec 5.7 Tips for Adjusting Learning Rate and Momentum
Deep Learning(CS7015): Lec 4.3 Output functions and Loss functions
Deep Learning(CS7015): Lec 8.3 True error and Model complexity
Deep Learning Part - II (CS7015): Lec 16.3 Can we represent the joint distribution more compactly
Deep Learning(CS7015): Lec 12.4 Finding influence of input pixels using backpropagation
Deep Learning(CS7015): Lec 9.4 Better initialization strategies
Deep Learning(CS7015): Lec 9.5 Batch Normalization
Deep Learning(CS7015): Lec 4.6 Backpropagation: Computing Gradients w.r.t. Hidden Units
Deep Learning(CS7015): Lec 4.5 Backpropagation: Computing Gradients w.r.t. the Output Units
Deep Learning(CS7015): Lec 13.4 The problem of Exploding and Vanishing Gradients
Deep Learning(CS7015): Lec 11.5 Image Classification continued (GoogLeNet and ResNet)
Deep Learning(CS7015): Lec 4.7 Backpropagation: Computing Gradients w.r.t. Parameters
Deep Learning(CS7015): Lec 14.2 Long Short Term Memory(LSTM) and Gated Recurrent Units(GRUs)
Deep Learning(CS7015): Lec 6.8 Singular Value Decomposition
Deep Learning(CS7015): Lec 11.3 Convolutional Neural Networks
Deep Learning(CS7015): Lec 8.8 Adding Noise to the outputs
Deep Learning(CS7015): Lec 1.9 (Need for) Sanity
Deep Learning(CS7015): Lec 14.3 How LSTMs avoid the problem of vanishing gradients
Deep Learning Part - II (CS7015): Lec 22.3 Generative Adversarial Networks - The Math Behind it
Комментарии