Reinforcement Learning: a gentle Introduction and industrial Application | Dr. Christian Hidber

preview_player
Показать описание

Reinforcement learning learns complex processes autonomously. No big data sets with the “right” answers are needed; the algorithms learn by experimenting. By using reinforcement learning, robots learn to walk, beat the world champion in Go, or fly a helicopter.

This talk shows “how” and “why” reinforcement learning algorithms work in an intuitive fashion, illustrating their inner-workings by the way a child learns to play a new game. We show what it takes to rephrase a real world problem as a reinforcement learning task and take a look at the challenges to bring it into production on 7000 client in 42 countries all around the world.

Our industrial application is based on siphonic roof drainage systems. It warrants that large buildings like stadiums, airports, or shopping malls do not collapse during heavy rainfalls. Choosing the “right” diameters is difficult, requiring intuition and hydraulic expertise. As of today, no feasible, deterministic algorithm is known. Using reinforcement learning we were able to reduce the fail rate of our existing solution – based on classic supervised learning – by more than 70%.

Рекомендации по теме
Комментарии
Автор

The Stack is so Hard wired to the UI, combinational test units my fuck up the whole result.... And the use case is still å real World Example which makes The thing quite reasonable.... Thx

oneTETSUO