Nice Algebra Problem || Tricky Maths Olympiad Question

preview_player
Показать описание
Hello my Wonderful family 😍😍😍

Trust you're doing fine 😊.

•If you like this video about Math Olympiad Problem Solving.

~Please like and Subscribe to my channel.
It helps me a lot. Thanks 🙏

•Oxford University Entrance Exam Question
•Harvard University Entrance Examination
•International Math Olympiad
•Math Olympiad Questions
•Mathematics Education
•Math Problem Solving
•Advanced Math Concepts
•Challenging Math Problems
•Algebraic Expressions
•Nice Square Root Math Simplification
•Nice Algebra Simplification
•Nice Radical Simplification
•USA Mathematical Olympiad
•Germany Math Olympiad
•Japanese Math Olympiad
•Pakistan Math Olympiad
•China Math Olympiad
•Russian Math Olympiad
•Indian Math Olympiad
•Australia Math Olympiad
•Thailand junior maths olympiad questions
•How to solve | Math Olympiad

#matholympiad #algebra#math#simplification #exponents#viralmathproblem #howtosolve#mathematics#viral #mathematicslesson#math#maths
#canyousolvethis?#olympiad #mathematics#mathtricks#matholympiadquestion#funofmathematics#algebra#exponential#olympiadalgebra#exponentialequation #howtosolvemaths#education #equations #mathbeast

•SPREAD POSITIVITY ALWAYS ❤️
Subscribe (⁠•⁠‿⁠•⁠)
Рекомендации по теме
Комментарии
Автор

a² = ab*ca/bc = 3000/2
b² = ab*bc/ ca = 2000/3
c² = bc*ca/ab = 6000

musicsubicandcebu
Автор

c=2a 2a²=3000 a²=1500
c=3b 3b²=2000   b²=2000/3    
c²=4a²=6000
a²+b²+c²=24500/3

himo
Автор

Nice Algebra Problem: ab = 1000, bc = 2000, ca = 3000; a² + b² + c² =?
(ab)(bc)(ca) = (1000)(2000)(3000), (abc)² = 6(10⁹)
a² = [(abc)²]/[(bc)²] = [6(10⁹)]/(2000²) = (3/2)(10³)
b² = [(abc)²]/[(ca)²] = [6(10⁹)]/(3000²) = (2/3)(10³)
c² = [(abc)²]/[(ab)²] = [6(10⁹)]/(1000²) = 6(10³)
a² + b² + c² = (3/2)(10³) + (2/3)(10³) + 6(10³) = (3/2 + 2/3 + 6)(10³)
= (49/6)(10³) = 49000/6 = 24500/3

walterwen
Автор

ab = 1000
bc = 2000
ça = 3000
a^2 + b^2 + c^2 = 3000/2 + 2000/3 + 6000 = 8166 + 2/3

cyruschang
Автор

Let me suggest a different approach. First, solve for b in terms of a from the first equation, and solve for c in terms of a from the third equation. Next, substitute b and c in terms of a in the second equation to get the value for a. Last step, use the value of a to get the values of b and c, substitute these values in the sum of squares, and voila!:). Hope this helps.

CNunez-vnhr
Автор

Muy buena la form de abordar el ejercicio y mejor la conclución, gracias

Nuncamasusado
Автор

зачем так сложно сразу найти a²=1500 b²= c² =

риколай-щю
Автор

Simpler to start with abc =1000c, abc =2000a, abc=3000b, then subtract 1000c-2000a to find that c=2a. Similiarly we find that b = 2/3 a Then since ca= 3000, then a = the square root of 1500. Of course the rest of the problem is trivial.

jerryhopfe