Generating YARA Rules by Classifying Malicious Byte Sequences

preview_player
Показать описание
While ML models for malware detection have become an industry standard for heuristically detecting malware, signature-based detection still proliferates thanks to ease of updates, transparency of detection logic, and operability in compute-constrained environments. In this work, we propose an interpretable machine learning model that can generate signatures tuned to optimize detection and minimize false positives on a given corpus of malware and benign samples. On a corpus of malicious and benign ELF executables targeting i386 and amd64, we observe detection rates in the 80% range with a false positive rate of 0% on the benign corpus with a few hundred YARA rules...

By: Mathy Vanhoef

Full Abstract & Presentation Materials:
Рекомендации по теме