Benjamin Bengfort: Visual Diagnostics for More Effective Machine Learning | PyData Miami 2019

preview_player
Показать описание
The model selection process is a search for the best combination of features, algorithm, and hyperparameters that maximize F1, R2, or silhouette scores after cross-validation. This view of machine learning often leads us toward automated processes such as grid searches and random walks. Although this approach allows us to try many combinations, we are often left wondering if we have actually succeeded.

By enhancing model selection with visual diagnostics, data scientists can inject human guidance to steer the search process. Visualizing feature transformations, algorithmic behavior, cross-validation methods, and model performance allows us a peek into the high dimensional realm that our models operate. As we continue to tune our models, trying to minimize both bias and variance, these glimpses allow us to be more strategic in our choices. The result is more effective modeling, speedier results, and a greater understanding of underlying processes.

Visualization is an integral part of the data science workflow, but visual diagnostics are directly tied to machine learning transformers and models. The Yellowbrick library extends the scikit-learn API providing a Visualizer object, an estimator that learns from data and produces a visualization as a result. In this talk, we will explore feature visualizers, visualizers for classification, clustering, and regression, as well as model analysis visualizers. We'll work through several examples and show how visual diagnostics steer model selection, making machine learning more effective.

PyData is an educational program of NumFOCUS, a 501(c)3 non-profit organization in the United States. PyData provides a forum for the international community of users and developers of data analysis tools to share ideas and learn from each other. The global PyData network promotes discussion of best practices, new approaches, and emerging technologies for data management, processing, analytics, and visualization. PyData communities approach data science using many languages, including (but not limited to) Python, Julia, and R.

PyData conferences aim to be accessible and community-driven, with novice to advanced level presentations. PyData tutorials and talks bring attendees the latest project features along with cutting-edge use cases. 00:00 Welcome!
00:10 Help us add time stamps or captions to this video! See the description for details.

Рекомендации по теме