let s finish the tensorflow js autoencoder project

preview_player
Показать описание


prerequisites
1. basic understanding of javascript and html.
3. a modern web browser.

setting up the project

loading the mnist dataset

building the autoencoder model

next, we will define the architecture of our autoencoder.

preprocessing the data

before feeding the data into the model, we need to preprocess it.

training the autoencoder

now, we will create a function to train the autoencoder using the loaded mnist data.

visualizing the results

to visualize how well our autoencoder is performing, we can create a function that generates and displays the reconstructed images.

putting it all together

finally, we will wire everything up in the main function and handle the button click to train the autoencoder.

complete code

running the project

2. click the "train autoencoder" button.
3. watch the training process in the console and see the original and reconstructed images displayed on the canvas.

conclusion

#TensorFlowJS #Autoencoder #windows
tensorflow js autoencoder project machine learning deep learning neural networks data compression unsupervised learning anomaly detection model training JavaScript libraries AI development performance optimization data preprocessing visualization techniques model evaluation
Рекомендации по теме
join shbcf.ru