filmov
tv
If `veca, vecb` and `vecc` are unit coplanar vectors, then the scalar triple product `[(2v
Показать описание
If `veca, vecb` and `vecc` are unit coplanar vectors, then the scalar triple product `[(2veca-vecb, 2vecb-vecc, 2vecc-veca)]=`
Doubtnut
Рекомендации по теме
0:05:18
If `vecA, vecB` and `vecC` are vectors such that `|vecB|=|C|` Provethat `[(vecA+ vecB)× (vec
0:05:56
If ` veca. Vecb and vecc` are unit vectors satisfying ` |veca -vecb|^(2) +|vecb -vecc|
0:02:59
If `vecA = vecB + vecC` and the magnitudes of `vecA, vecB and vecC` a een `vecA` and `vecC` is :
0:04:24
If `vecA,vecB` and `vecC` are coplanar vectors, then
0:03:52
If `veca, vecb` and `vecc` are vectors such that `vecb` and `vecc` are perpendicular, but `vec
0:06:22
If `veca,vecb and vecc ` are vectors such that `|vecb|=|vecc|` then `{(veca+vecb)xx(veca+vecc)}xx
0:02:53
If veca, vecb and vecc are three unit vectors such that veca xx (vecb xx vecc) = 1/2 vecb , then...
0:06:46
If `veca, vecb` and `vecc` are three non co planar vectors, then the length of projection of v
0:04:27
If `veca, vecb and vecc` are vectors such that `|veca|=3,|vecb|=4 and |vec|=5 and (veca+vecb)` is
0:01:41
If `veca,vecb` and `vecc` are three non-coplanar vectors, then the vector equation
0:04:30
If veca, vecb and vecc are such that [veca vecb vecc] =1, vecc= lambda veca xx vecb, angle betwe...
0:04:02
If veca, vecb and vecc are three unit vectors such that veca xx (vecb xx vecc) = 1/2 vecb , then...
0:05:15
If `vecA,vecB and vecC` are three non coplanar then `(vecA+vecB+vecC).{(vecA+vecB)xx(vecA+vecC)}
0:03:41
If `veca,vecb` and `vec c` are perpendicular to `vecb+vecc, vecc+veca, veca+vecb` respectively ...
0:03:31
If `veca, vecb and vecc ` are unit vectors then `|veca-vecb|^2+|vecb-vecc|^2+|vecc-veca|^2` i
0:04:30
If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc...
0:04:59
Theorem 2: If `veca`, `vecb` and `vecc` are non coplanar vectors; then any vector `vecr` can be
0:02:31
If `veca,vecb and vecc` are non coplanar and unit vectors such that `vecaxx(vecbxxvecc)=(vecb+vecc)
0:02:48
If `veca,vecb and vecc` are non coplaner vectors such that `vecbxxvecc=veca`, `veccxxveca=vecb
0:06:46
If `veca,vecb and vecc` are non coplnar and non zero vectors and `vecr` is any vector in space then`
0:02:52
If `veca, vecb` and `vecc` are unit coplanar vectors, then the scalar triple product `[(2v
0:03:30
If veca ,vecb and vecc are three mutually orthogonal unit vectors , then the triple product [vec...
0:10:17
If `veca,vecb and vecc` are three non coplanar vectors and `vecr` is any vector in space, then
0:04:17
If the three vectors `veca,vecb,vecc` are such that `veca+vecb+vecc=vec0' and