Blood Flow: Multi-scale Modeling and Visualization

preview_player
Показать описание
Multi-scale modeling of arterial blood flow can shed light on the interaction between events happening at micro- and meso-scales (i.e., adhesion of red blood cells to the arterial wall, clot formation) and at macro-scales (i.e., change in flow patterns due to the clot). Coupled numerical simulations of such multi-scale flow require state-of-the-art computers and algorithms. Along with developing methods for multi-scale computations, techniques for multi-scale visualizations must be designed.

This animation presents early results of joint efforts of teams from Brown University and Argonne National Laboratory to develop a multi-scale visualization methodology. It illustrates a flow of healthy (red) and diseased (blue) blood cells with a Dissipative Particle Dynamics (DPD) method. Each blood cell is represented by a mesh made of 500 DPD-particles, and small spheres show a sub-set of the DPD particles representing the blood plasma, while instantaneous streamlines and slices represent the ensemble average velocity.

Credits:
Science: Leopold Grinberg and George Karniadakis, Brown University
Visualization: Joseph A. Insley and Michael E. Papka, Argonne National Laboratory

This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357.

This research was supported in part by the National Science Foundation through the PetaApps program and used TeraGrid resources provided by National Institute for Computational Sciences.
Рекомендации по теме