filmov
tv
Prove that `veca\'.(vecb+vecc)+vecb\'.(vecc+veca)+vecc\'.(veca+vecb)=0`
Показать описание
Prove that `veca\'.(vecb+vecc)+vecb\'.(vecc+veca)+vecc\'.(veca+vecb)=0`
Doubtnut
Рекомендации по теме
0:04:41
Prove that `veca\'.(vecb+vecc)+vecb\'.(vecc+veca)+vecc\'.(veca+vecb)=0`
0:02:33
Prove that `vecaxx(vecb+vecc)+vecbxx(vecc+veca)+veccxx(veca+vecb)=0`
0:03:21
If `|veca|=1,|vecb|=2,|vecc|=3and veca+vecb+vecc=0` the show that `veca.vecb+vecb.vecc+vecc.veca=-`7
0:04:06
If `veca+vecb+vecc=0`, prove that `(vecaxxvecb)=(vecbxxvecc)=(veccxxveca)`
0:04:55
Prove that `[ veca+ vecb , vecb+ vecc , vecc+ veca]=2[ veca , vecb , vecc]` ....
0:03:53
The scalar `vecA.(vecB+vecC)xx(vecA+vecB+vecC)` equals (A) 0 (B) `[vecA vecB vecC]+[vecB vecC vecA]`
0:05:25
Prove that `[veca+vecb, vecb+vecc ,vecc+veca]=2[veca vecb vecc]`
0:04:03
given that veca. vecb = veca.vecc, veca xx vecb= veca xx vecc and veca is not a zero vector. Sh...
0:03:40
If vecA,vecB,vecC are mutually perpendicular show that vecCxx(vecAxxvecB)=0. Is the converse tru...
0:03:39
If `vecA,vecB,vecC` are mutually perpendicular show that `vecCxx(vecAxxvecB)=0`. Is the converse...
0:04:17
`veca,vecb,vecc` are non zero vectors. If `vecaxxvecb=vecaxxvecc and veca.vecb=veca.vecc`
0:03:12
If `veca,vecbandvecc` are unit vectors such that `veca+vecb+vecc=0`, then the value of `veca.vecb
0:02:47
If veca xx vecb = vecb xx vecc ne 0 where veca , vecb and vecc are coplanar vectors, then for s...
0:04:54
If `veca,vecb,vecc` are non zero vectors and `vecb` is not parallel to `(vecaxxvecc)` show that `
0:05:37
If `veca,vecb,vecc` are non zero and non coplanar vectors show that the
0:06:46
If vec a,vec b , vec c are unit vectors such that veca + vec b+ vecc = 0 and lambda = veca.vecb ...
0:06:52
If `veca,vecb,vecc` are non zero and non coplanar vectors show that the
0:04:40
If `veca+vecb+vecc=0`, then show that `vecaxxvecbxxvecc=veccxxveca`. Interpret
0:02:36
Let `veca, vecb, vecc` be three non zero vectors such that `veca+ vecb + vec c=0` then `lambda(...
0:04:32
If for three non zero vectors `veca,vecb` and ` vecc `; `veca.vecb = veca.vecc` and `vecaxxvecb...
0:06:09
If `veca,vecb,vecc` are non zero and non coplanar vectors show that the
0:04:12
If for three non zero vectors `veca,vecb` and ` vecc `; `veca.vecb = veca.vecc` and `vecaxxvec
0:02:42
If `vecx.veca=0vecx.vecb=0 and vecx.vecc=0` for some non zero vector `vecx` then show that
0:05:18
If `veca,vecb,vecc` be three non coplanar vectors show that `vecbxxvecc,veccxxveca,vecaxxvecb` are