filmov
tv
Все публикации
0:11:35
ML - 17CS73 (Module 4) BAYEIAN LEARNING: Minimum Description Length Principal
0:10:45
CO - 18CS34 (module 3) Concepts: Hit Rate & Miss Penalty and Caches on the Processor Chip
0:19:15
ML(Module 4) BAYEIAN LEARNING: MAXIMUM LIKELIHOOD HYPOTHESES FOR PREDICTING PROBABILITIES
0:14:16
CO - 18CS34 (module 3) Concepts: Replacement Algorithms and Performance Considerations
0:15:07
Machine Learning (Module 4) BAYEIAN LEARNING: Normal Probability Distribution(Gaussian Distribution)
0:16:25
Machine Learning (Module 4) BAYEIAN LEARNING: MAP Hypotheses and Consistent Learners
0:11:59
CO - 18CS34 (module 3) Concepts: Cache Memories
0:17:37
Machine Learning - 17CS73 (Module 4) BAYEIAN LEARNING - BAYES THEOREM and Example
0:11:47
Machine Learning - 17CS73 (Module 4) BAYEIAN LEARNING - Introduction & Features of Bayesian Learning
0:15:27
CO - 18CS34 (module 3) Concepts: Asynchronous Memories (DRAM) and Synchronous DRAMs(SDRAM)
0:23:22
CO (module 3) Concept:Semiconductor RAM Memories, Static Memories (SRAM)&Asynchronous Memories(DRAM)
0:14:14
Machine Learning - 17CS73 (Module 3) Concepts: REMARKS ON THE BACKPROPAGATION ALGORITHM
0:15:52
Machine Learning 17CS73 (Module 3) Concepts: Derivation of the Back Propagation Rule
0:19:06
Machine Learning (Module 3) Concepts: Multilayer Networks and Back-Propagation Algorithm
0:14:19
Machine Learning (Module 3): Stochastic Approximation to Gradient Descent
0:12:19
Machine Learning (Module 3): Gradient Descent Rule and Gradient Descent Algorithm
0:16:14
CO - 18CS34 ( module 2) Concepts: USB Addressing and USB Protocols
0:29:53
CO ( module 2) Concepts: USB and USB Architecture
0:12:17
Machine Learning (Module 3): Gradient Descent and Delta Rule, Visualizing the Hypothesis Space
0:16:48
Machine Learning (Mod3):PERCEPTRONS, Representational Power of Perceptrons, Perceptron Training Rule
0:18:02
CO ( module 2) Concepts: Output Interface Circuit, Combined I/O interface circuit.
0:16:02
Machine Learning (Module 3)- Concepts: Architectures of Artificial Neural Networks, PERCEPTRONS
0:09:08
Machine Learning (Module 3)- Concepts: 'APPROPRIATE PROBLEMS FOR NEURAL NETWORK LEARNING'
0:11:43
Machine Learning (Module 3)- Concepts: NEURAL NETWORK REPRESENTATIONS
Вперёд