filmov
tv
Все публикации
0:00:57
Fully Nonlinear Neuromorphic Computing using Linear Optics
1:36:37
Lecture 29: Solomonoff's Algorithmic Probability and Theory of Induction. Conclusions/Outlook.
1:35:37
Lecture 28: Turing Machines. Algorithmic (Kolomogoroff) Complexity. Universal (Levin) Search.
1:32:38
Lecture 27: Bayesian Optimal Experimental Design. Active Learning: Gaussian Processes and Networks.
1:34:57
Lecture 26: Active Learning for Network Training: Uncertainty Sampling and other approaches.
1:33:01
Lecture 25: Reinforcement Learning: Continuous actions. Model-based. Monte Carlo Tree Search.
1:31:36
Lecture 24: Advantage Actor-Critic. Trust Regions. Proximal Policy Optimization.
1:37:06
Lecture 23: Reinforcement Learning - Policy Gradient and Q-Learning.
1:38:02
Lecture 22: Implicit Layers. Hamiltonian and Lagrangian Networks. Reinforcement Learning Overview.
1:39:51
Lecture 21: Transformers (and examples). Implicit Layers.
1:38:54
Lecture 20: Attention. Differentiable Neural Computer. Transformers.
1:30:25
Lecture 19: Graph Neural Networks. Attention Mechanisms (Basics).
0:00:40
Animation: Graph Neural Network predicting Quantum Ground States
1:28:57
Lecture 18: Recurrent Neural Networks. Graph Neural Networks.
0:00:50
Animation: Variational Autoencoder
0:02:31
Animation: Generative Adversarial Network
0:01:40
Animation: Normalizing Flow (Invertible Neural Network)
1:34:24
Lecture 17: Generative Adversarial Networks. Recurrent Neural Networks.
1:33:22
Lecture 16: Variational Autoencoder. Generative Adversarial Networks.
1:32:57
Lecture 15: Restricted Boltzmann Machines. Conditional Sampling. Variational Autoencoder.
1:33:26
Lecture 14: Boltzmann Machines (General Theory).
1:31:55
Lecture 13: Invertible Neural Networks. Convolutional and Conditional Invertible Networks.
0:45:12
Moderne Physik: 'Auf der Jagd nach kosmischen Teilchen.' (Prof. Anna Nelles)
1:32:29
Lecture 12: Mutual Information. Learning Probability Distributions. Normalizing Flows.
Вперёд