filmov
tv
Все публикации
0:04:24
IR20.7 Learning to rank for Information Retrieval
0:01:03
IR20.11 Summary
0:02:32
IR20.8 Learning to rank with an SVM
0:11:55
PCA 11: Eigenvector = direction of maximum variance
0:02:59
PCA 20: Linear discriminant analysis
0:01:52
PCA 18: When principal components fail
0:03:57
PCA 16: Eigenface representation
0:02:14
PCA 10: Low-dimensional projections of data
0:03:00
PCA 7: Why we maximize variance in PCA
0:05:21
PCA 9: Finding eigenvalues and eigenvectors
0:01:59
PCA 21: Pros and cons of dimensionality reduction
0:03:57
PCA 13: How many principal components to use?
0:05:01
PCA 15: Eigen-faces
0:08:26
PCA 8: Principal components = eigenvectors
0:03:49
PCA 14: Principal component analysis for the impatient
0:02:18
PCA 17: Properties of eigenfaces
0:02:39
PCA 6: Principal component analysis
0:01:48
PCA 19: Classification with PCA features
0:04:53
EM.2: Expectation-maximization algorithm
0:02:33
EM.1: Introduction to mixture models
0:01:50
Clustering 1: Overview
0:02:54
Clustering 3: Types of clustering algorithms
0:12:51
Clustering 10: Intrinsic evaluation and alignment
0:03:33
Clustering 6: The k-means algorithm visually
Вперёд