Все публикации

K-means++ & Lloyd's algorithm

Principal Component Analysis (PCA) - Step by Step

Decision Tree - Gini Impurity

Radial Basis Function Kernel - Gaussian Kernel

Kernel Trick Visualization, Derivation, and Explanation.

Perceptron

Soft Margin SVM

Maximum Margin Classifier, SVM - Support Vector Machine

Logistic Regression | Binary Logistic Regression

Bayesian Inference & Maximum a Posteriori Estimation | Bayesian Statistics

Linear Regression as Maximum Likelihood

Maximum Likelihood Estimation

Consistency in Estimators, Bias of Consistent Estimators

Bias & Variance Tradeoff with MSE

Variance and Standard Error of an Estimator/Statistic

Bias of an Estimator

Point Estimators & Function Estimators

K-fold Cross-Validation

Parameters and Hyperparameters

Weight Decay - L2 Regularization Example

No Free Lunch Theorem (NFL)

K-Nearest Neighbor Regression

Overfitting And Underfitting In Machine Learning

Linear Regression