filmov
tv
Все публикации
0:11:03
4.1 Sequence Model Basics
0:15:25
2.2 Data Preprocessing (with Pandas)
0:17:44
3.2 Object Detection Basics
0:11:53
3.1 Preprocessing and Transfer Learning
0:19:39
2.3 Modern Convnets (ResNet, NiN, Inception, ShuffleNet, etc.)
0:14:34
2.2 LeNet and AlexNet
0:19:24
2.1 Convolutions (Padding, Stride, Pooling)
0:15:52
1.3 Multilayer Perceptron, Dropout, Residual Connections, Batch Norm
0:14:14
2.1 Data Manipulation
0:20:23
1.2 SGD and Backprop
0:14:04
1.1 Linear and Logistic Regression
0:29:24
AutoGluon Overview at WAIC'20
0:15:33
Dive into Deep Learning D2L at WAIC'20
0:29:44
ML Confidential or The case for AutoML
0:32:48
AutoGluon Overview ICML'20 Workshop
0:31:32
AWS Machine Learning and Open Source
0:17:51
L26/1 Momentum, Adagrad, RMSProp, Adam
0:07:31
L26/2 Momentum, Adagrad, RMPProp in Python
0:32:04
L26/3 Course Summary
0:09:26
L25/4 Minibatch SGD in Python
0:07:24
L25/3 Gradient descent in Python
0:18:41
L25/2 Gradient Descent and Convergence Rate
0:17:18
L25/1 Convex Optimization
0:41:36
L24/6 Transformer in Python
Назад
Вперёд