Все публикации

Lab 05: Troubleshooting & Testing (FSDL 2022)

Lecture 03: Troubleshooting & Testing (FSDL 2022)

Lab 04: Experiment Management (FSDL 2022)

Lecture 02: Development Infrastructure & Tooling (FSDL 2022)

Lab Intro and Overview (FSDL 2022)

Lab 02: PyTorch Lightning and Convolutional NNs (FSDL 2022)

Lab 01: Neural networks in PyTorch (FSDL 2022)

Lab 03: Transformers and Paragraphs (FSDL 2022)

Lecture 01: When to Use ML and Course Vision (FSDL 2022)

Top 10 Final Projects (Full Stack Deep Learning - Spring 2021)

Panel Discussion: Do I need a PhD to work in ML? (Full Stack Deep Learning - Spring 2021)

Lecture 13: ML Teams (Full Stack Deep Learning - Spring 2021)

Lecture 12: Research Directions (Full Stack Deep Learning - Spring 2021)

Lab 9: Web Deployment (Full Stack Deep Learning - Spring 2021)

Lecture 11B: Monitoring ML Models (Full Stack Deep Learning - Spring 2021)

Lecture 11A: Deploying ML Models (Full Stack Deep Learning - Spring 2021)

Lab 8: Testing and Continuous Integration (Full Stack Deep Learning - Spring 2021)

Lab 7: Paragraph Recognition (Full Stack Deep Learning - Spring 2021)

Lecture 10: ML Testing & Explainability (Full Stack Deep Learning - Spring 2021)

Lecture 9: Ethics (Full Stack Deep Learning - Spring 2021)

Lab 6: Data Labeling (Full Stack Deep Learning - Spring 2021)

Lecture 8: Data Management (Full Stack Deep Learning - Spring 2021)

Lab 5: Experiment Management (Full Stack Deep Learning - Spring 2021)

Lecture 7: Troubleshooting Deep Neural Networks (Full Stack Deep Learning - Spring 2021)

join shbcf.ru