filmov
tv
Все публикации
0:29:15
Lab 05: Troubleshooting & Testing (FSDL 2022)
0:42:42
Lecture 03: Troubleshooting & Testing (FSDL 2022)
0:32:10
Lab 04: Experiment Management (FSDL 2022)
0:51:52
Lecture 02: Development Infrastructure & Tooling (FSDL 2022)
0:13:17
Lab Intro and Overview (FSDL 2022)
0:08:37
Lab 02: PyTorch Lightning and Convolutional NNs (FSDL 2022)
0:07:09
Lab 01: Neural networks in PyTorch (FSDL 2022)
0:10:44
Lab 03: Transformers and Paragraphs (FSDL 2022)
0:53:34
Lecture 01: When to Use ML and Course Vision (FSDL 2022)
1:29:56
Top 10 Final Projects (Full Stack Deep Learning - Spring 2021)
0:36:20
Panel Discussion: Do I need a PhD to work in ML? (Full Stack Deep Learning - Spring 2021)
0:58:14
Lecture 13: ML Teams (Full Stack Deep Learning - Spring 2021)
1:20:02
Lecture 12: Research Directions (Full Stack Deep Learning - Spring 2021)
0:20:26
Lab 9: Web Deployment (Full Stack Deep Learning - Spring 2021)
0:36:55
Lecture 11B: Monitoring ML Models (Full Stack Deep Learning - Spring 2021)
0:53:26
Lecture 11A: Deploying ML Models (Full Stack Deep Learning - Spring 2021)
0:13:26
Lab 8: Testing and Continuous Integration (Full Stack Deep Learning - Spring 2021)
0:18:40
Lab 7: Paragraph Recognition (Full Stack Deep Learning - Spring 2021)
1:41:12
Lecture 10: ML Testing & Explainability (Full Stack Deep Learning - Spring 2021)
1:04:51
Lecture 9: Ethics (Full Stack Deep Learning - Spring 2021)
0:05:06
Lab 6: Data Labeling (Full Stack Deep Learning - Spring 2021)
0:59:43
Lecture 8: Data Management (Full Stack Deep Learning - Spring 2021)
0:30:41
Lab 5: Experiment Management (Full Stack Deep Learning - Spring 2021)
1:07:27
Lecture 7: Troubleshooting Deep Neural Networks (Full Stack Deep Learning - Spring 2021)
Назад
Вперёд
join shbcf.ru