Все публикации

13 .13 - 13.15 - Unit III - Kernel of Homomorphism - UG Abstract Algebra

10 .4 -10. 6 - Unit 2 - Example for Left and Right Coset - UG Abstract Algebra - MG University

10 .3 - Unit 2 - Example for left and right coset - UG Abstract Algebra - Semester V - MG University

10 .1 - 10. 2 - Left and Right Coset - Unit 2 - UG Abstract Algebra

9. 20 - 9. 21 - Alternating Groups -Unit 2 - UG Abstract Algebra

8 .14 - 8. 15 - Unit II - Image of a Subset, Lemma of Cayley' s Theorem - UG Abstract Algebra

6 .14 - 6.15 - Unit I - UG Abstract Algebra (Subgroups of Finite Cyclic Groups)

2.1.6 - 2. 1. 8 - Unit I - Functional Analysis - Linear Independence, Dimension of a Subspace

6.1.6 - Unit II - Real Analysis - Chain Rule

26 .16 - Abstract Algebra

2.2.8 - Unit I - Functional Analysis - Can every metric on a vector space be obtained from a norm?

May, 2022 - Part 2 - 5 - 8 - UG Abstract Algebra - Previous University Questions

May, 2022 - 1 - 4 - Previous University Questions - UG Abstract Algebra

Problem 2 - Polar Equations - Analytic Geometry

13.18 - 13. 20-A homomorphism is 1-1 iff Kernel= {e}. Normal Subgroup. Kernel is a normal subgroup

48.3 - 48.4 (The Conjugation Isomorphisms) - Unit III - Advanced Abstract Algebra - MG University

13. 4 - 13. 6 - Unit III - Section 13 - Examples of Homomorphism- UG Abstract Algebra -

51.10-Unit IV-Advanced Abstract Algebra-MG University

14 .13 - Three equivalent conditions for a subgroup H of a group G to be a normal subgroup of G

9 .11 - 9 .14 - Unit II - UG Abstract Algebra (Transposition)

Unit III - Video 1 - 48.1 - 48.2 (Conjugate Elements) - Advanced Abstract Algebra- MG University

33.8 - Advanced Abstract Algebra-Unit I - MG University - Semester II - Unit I - Section 33 - 33.8

31.7 Corollary - Advanced Abstract Algebra - Unit I - Section 31

8.3.2 -Unit III-Spectral Theory-Lemma (Compactness of Product)