Все публикации

AY2122-STO13 - Lecture 2 - Types of Variables

AY21-22-STO13 - Lecture 6 - Basics of Probability Theory

AY21-22- STO13-Lecture 19 - knn using R - Part 1

AY21-22-STO13-Lecture 23-Basic Principles of CART

AY21-22-STO13 -Lecture 34 - Random Forest

AY21-22- STO13-Lecture 16 - Parametric and Nonparametric Bootstrap in R

AY21-22-STO13-Lecture 22- Introduction to Classification and Regression Trees

AY21-22-STO13 - Lecture 7 - Basics of Inference

AY21-22-STO13 - Lecture 8 - Nonparametric Bootstrap

AY21-22-STO13 - Lecture 3 - Predictors and Response

AY21-22-STO13-Lecture 27 - Categorical Predictors in CART

AY21-22-STO13-Lecture 30 - Feature Selection 1

AY21-22-STO13-Lecture 39 - Maximal Margin Classifier

AY21-22-STO13-Lecture 28 - Miscellaneous issues in CART

AY21-22-STO13-Lecture 4 - Why Data Mining?

AY21-22-STO13-Lecture 33 - Bagging

AY21-22-STO13-Lecture 40 - Support Vector Classifier

AY21-22-STO13-Lecture 17 - Crossvalidation using R

AY21-22-STO13-Lecture 35 - Tackling Multiplicity Issues

AY21-22-STO13-Lecture 36 - Boosting in Regression Trees

AY21-22-STO13-Lecture 18 - Effect of Model Flexibility on Errors using R

AY21-22-STO13-Lecture 32 - Multiplicity Issue in Testing of Hypotheses

AY21-22-STO13- Lecture 29 - Feature extraction

AY21-22-STO13-Lecture 11 - Jackknife

join shbcf.ru