filmov
tv
Все публикации
0:05:50
Introduction to Counting Arguments
0:10:00
The Reverse (or Extended) Euclidean Algorithm
0:09:18
Introduction to Bayesian Inference
0:10:26
Bayesian Inference: Introduction to Conjugate Priors
0:11:03
Conjugate Priors: Examples
0:10:42
Bayesian Inference and its Implementation with MCMC
0:10:06
Markov Chain Monte Carlo (MCMC) Diagnostics
0:07:48
Markov Chains and Equilibrium Distributions through Simulation
0:07:56
Markov Chains: Equilibrium Distributions, Ergodicity and Periodicity
0:07:54
Introduction to Markov Chain Monte Carlo (MCMC) and the Metropolis-Hastings Algorithm
0:09:37
Markov Chain Monte Carlo (MCMC) and the Metropolis-Hastings Algorithm: Derivation and Visualisation
0:11:19
Markov Chain Monte Carlo (MCMC) and the Metropolis-Hastings Algorithm: Example
0:08:29
Modelling Different Response Types: Introduction to Generalised Linear Models (GLMs)
0:06:05
Binary Regression: Logit and Probit Functions
0:09:03
The Exponential Family: Mean and Variance Calculations
0:10:22
introduction to the Exponential Family of Distributions and Canonical Form
0:13:56
Generalised Linear Models and Fisher Scoring
0:09:15
Introduction to Bias
0:09:13
Comparing Unbiased Estimators and Basu’s Elephant
0:11:27
Comparing Unbiased Estimators: Introduction to the Score Function and Fisher Information
0:08:20
Introduction to Efficiency and the Cramér-Rao Bound
0:05:59
Ordinary Least Squares: Variance of Parameter Estimates
0:11:01
Confidence Intervals
0:05:41
Prediction Intervals vs Confidence Intervals
Вперёд
visit shbcf.ru