filmov
tv
Все публикации
0:05:57
What is so amazing about Wigner's semicircle law?
0:19:47
The curse and the blessing of high dimensions
1:10:11
RM+ML: 29. Free Probability Theory and Linearization of Non-Linear Problems
0:53:13
RM+ML: 28. Properties of the Neural Tangent Kernel
1:25:57
RM+ML: 27. Time Evolution of Learning and Neural Tangent Kernel
1:13:12
RM+ML: 26. Gradient Descent for Linear Regression
0:16:34
RM+ML: 25. Gaussian Equivalence Principle for Non-Linear Random Features
1:36:12
RM+ML: 24. Calculation of the Random Feature Eigenvalue Distribution
1:19:34
RM+ML: 23. Cumulants and Their Properties and Uses
0:57:40
RM+ML: 21. Another Proof of Marchenko-Pastur -- Via Stein's Identity
0:53:38
RM+ML: 18. Double Descent and Linear Regression: Under-Determined Case
1:00:54
RM+ML: 17. Double Descent and Linear Regression: Over-Determined Case
0:22:59
RM+ML: 16. Proof of the Signal-Plus-Noise Theorem
0:54:21
RM+ML: 15. Spiked Signal-Plus-Noise Model
0:31:49
RM+ML: 14. Proof of Marchenko-Pastur: Stieltjes Inversion Formula
0:24:31
RM+ML: 13. Proof of Marchenko-Pastur: Equation for Stieltjes Transform
1:07:18
RM+ML: 12. Preparations for Proof of Marchenko-Pastur Law
0:59:39
RM+ML: 11. The Marchenko-Pastur Law for Wishart Matrices
1:05:03
RM+ML: 9. Wishart Random Matrices and Concentration of Largest Eigenvalue
0:26:26
RM+ML: 10. Proof of Concentration of Largest Eigenvalue
0:43:24
RM+ML: 8. General Remarks on Linear and Non-Linear Concentration Inequalities
1:05:20
RM+ML: 7. Proof of Non-Linear Concentration for Gaussian Random Vectors
1:30:06
RM+ML: 6. Non-Linear Concentration of Gaussian Random Vectors for Lipschitz Functions.
1:23:07
RM+ML: 5. Exponential Concentration of Norm of Gaussian Random Vectors
Вперёд