Все публикации

6 Ways to Optimize Power BI Dashboards for Speedy Performance

Data + AI Summit 2023

LLM Module 6: LLMOps | 6.7 Notebook Demo

LLM Module 4: Fine-tuning and Evaluating LLMs | 4.13.1 Notebook Demo Part 1

LLM Module 4: Fine-tuning and Evaluating LLMs | 4.10 Task specific Evaluations

LLM Module 4: Fine-tuning and Evaluating LLMs | 4.6 Fine Tuning: LLMs as a Service

LLM Module 4: Fine-tuning and Evaluating LLMs | 4.3 Applying Foundation LLMs

LLM Module 4: Fine-tuning and Evaluating LLMs | 4.2 Module Overview

LLM Module 4: Fine-tuning and Evaluating LLMs | 4.1 Introduction

LLM Module 3 - Multi-stage Reasoning | 3.7.1 Notebook Demo Part 1

LLM Module 3 - Multi-stage Reasoning | 3.7.2 Notebook Demo Part 2

LLM Module 3 - Multi-stage Reasoning | 3.1 Introduction

LLM Module 3 - Multi-stage Reasoning | 3.2 Module Overview

LLM Module 2 - Embeddings, Vector Databases, and Search | 2.10 Notebook Demo Weaviate (Optional)

LLM Module 2 - Embeddings, Vector Databases, and Search | 2.8.2 Notebook Demo Part 2

LLM Module 2 - Embeddings, Vector Databases, and Search | 2.8.1 Notebook Demo Part 1

LLM Module 2 - Embeddings, Vector Databases, and Search | 2.6 Best Practices

LLM Module 2 - Embeddings, Vector Databases, and Search | 2.2 Module Overview

LLM Module 2 - Embeddings, Vector Databases, and Search | 2.4 Filtering

LLM Module 2 - Embeddings, Vector Databases, and Search | 2.3 How does Vector Search work

LLM Module 2 - Embeddings, Vector Databases, and Search | 2.1 Introduction

LLM Module 1 - Applications with LLMs | 1.9 Notebook Demo

LLM Module 1 - Applications with LLMs | 1.6 Prompts

LLM Module 1 - Applications with LLMs | 1.7 Prompt Engineering