Все публикации

The only Idempotent in an Integral domain are 0 and 1||Joseph A. Gallian||CH 13 Q 18||Ring Theory

Show that the nilpotent elements of a commutative ring form a subring||Joseph A. Gallian||CH 13 Q 16

Give a reasonable interpretation for the expressions 1/2, -2/3, -2/6||Joseph A. Gallian||CH 13 Q 12

Joseph A. Gallian||CH 13 Q 10||All Zero-Divisors and units of Z+Q+Z||Ring Theory||Delhi University

Every non-zero element of Zn is a unit or a zero divisors||Joseph A. Gallian||CH 13 Q 5||Ring theory

Joseph A. Gallian||CH 13 PART 3||Finite Integral Domains are Fields||Zp is a field||Gaussian Integer

Joseph A. Gallian||CH 13 PART 2||Fields||Every Field is an Integral Domain||Ring theory #bscmaths

Joseph A. Gallian||CH 13 PART 1||Definition and Examples||Integral Domains||Zero Divisors #BscMaths

Joseph A. Gallian||CH 12 Q 57||Ring Theory #delhiuniversity #mathematics #Bscmaths #reeshaeducation

Show that 4x2+6x+3 is a unit in Z8[x]||Joseph A. Gallian||CH 12 Q 54 #ringtheory #delhiuniversity

Smallest Subring of Q that contains 2/3||Joseph A. Gallian||CH 12 Q48||Ring Theory #delhiuniversity

Show that 2Z U 3Z is not a subring of Z||Joseph A. Gallian||CH 12 Q 46||Ring Theory #DelhiUniversity

R is a subring of M(2,Z)||Joseph A. Gallian||CH 12 Q 42||Ring Theory||Delhi University||Semester 4

Joseph A. Gallian||CH 12 Q 36||mZ intersection nZ = kZ||Ring Theory||Delhi University||Semester 4

If x^n=x for all x, then ab=0 implies ba=0||CH 12 Q 32||Joseph A. Gallian||Ring Theory #du #maths

Joseph A. Gallian||CH 12 Q28||Ring Theory||Semester 4||Delhi university||Introduction to Rings #math

Joseph A. Gallian||CH 12 Q 27||Show that a unit of a ring divides every element of the ring #gallian

Joseph A Gallian||CH 12 Q 23||Determine U(Z[i])||Ring Theory||Delhi University #reeshaeducation #du

Joseph A Gallian||CH 12 Q 18||Semester 4||Delhi University||Ring Theory #reeshaeducation #iit

All Subrings of Integers||All Subrings of ring of Integers||Joseph A Gallian||CH 12 Q 13||Semester 4

Intersection of subrings is a subring||Joseph A. Gallian CH 12 Q 9||Ring Theory||Semester 4 #DU

Joseph Gallian CH 12 Q 2||Ring Theory||Semester 4|| The ring {0,2,4,6,8} under modulo 10, find unity

DU Sem 4 ,Ring Theory and Linear Algebra 1, Course Notification #du #sem4 #ringtheory #linearalgebra

Interview with Sagar Surya sir, Online career in teaching #iitjam #mathematics #unacademy