Все публикации

Problem: Show that (x, y) = y^t A x is an inner product on R^2/Inner product on several variables

2.1 Fourier transform/P1/Mathematical Method/Module 2

1.5 Solution of partial differential equations using Laplace transform/Mathematical Method

1.4 Solution of integro-differential equations using Laplace transform/Mathematical Method/ Module 1

1.3-Solution of IVP using Laplace transform/P2/Mathematical Methods/Module 1/Laplace transform

1.3 Solution of IVP using Laplace transform/Mathematical Methods/Module1/Laplace transformation/P-1

1.2.8 Convolution and Laplace transformations/Mathematical Methods/Module 1/Laplace transformation

Grade 7 Olympiad/Solve power equations

1.2.7Derivative and Integrations of Laplace transform/Mathematical Methods/M1/Laplace transformation

1.2.6 Shifting theorem (Second)/Mathematical Methods/Module 1/Laplace transformation

1.2.6 Shifting theorem for Laplace transform/Mathematical Method/Module 1/Laplace transform

1.2.5 Laplace transform of integrals/Mathematical Methods/Module 1/Laplace transform.

1.2.4 Laplace transform of derivatives/Mathematical Method/Module 1

Using digits 7,6, 5, 0 create the smallest five-digit number that is divisible by 12/ Olympiad

1.2.3 Laplace transform of known functions/Mathematical method/Module 1:Laplace transform/

1.2.1 Basic formulas and definitions/1.2.2 Linearity/Mathematical Method/Module 1-Laplace Transform

Algebra problem/Olympiad problem/(√2)^√𝑥+(√2)^√𝑦=68

Solve the equation: 𝒄𝒐𝒔^𝟐 (𝜶)+𝒄𝒐𝒔^𝟐 (𝟐𝜶)+𝒄𝒐𝒔^𝟐 (𝟑𝜶)=𝟏

Silent Math/Solving inequality/IMO 1962 @IMO1962

IMO 1962/Determine all real number 𝒙 for whic √(𝟑−𝒙)−√(𝟏+𝒙) greater than 𝟏/𝟐

Algebraic equation solving/ (𝟐𝒏−𝟏)/𝒂 + 𝟐𝒏/𝒃=𝟐𝒏+𝟏: Find positive integer a, b for natural number n

All three-digit numbers 𝑵: 𝑵 divisible by 𝟏𝟏&𝑵/𝟏𝟏 equal to the sum of the squares of digits of 𝑵.

𝒂 𝒄𝒐𝒔^𝟐 (𝒙)+𝒃 𝒄𝒐𝒔(𝒙)+𝒄=𝟎:Form quadratic equation in 𝒄𝒐𝒔(𝟐𝒙), with same roots of original equation

International Math Olympiad -1959/Construction of Right angle triangle.