Deep Learning with Tensorflow - Introduction to Unsupervised Learning

preview_player
Показать описание

Deep Learning with TensorFlow Introduction

The majority of data in the world is unlabeled and unstructured. Shallow neural networks cannot easily capture relevant structure in, for instance, images, sound, and textual data. Deep networks are capable of discovering hidden structures within this type of data. In this TensorFlow course you'll use Google's library to apply deep learning to different data types in order to solve real world problems.

Traditional neural networks rely on shallow nets, composed of one input, one hidden layer and one output layer. Deep-learning networks are distinguished from these ordinary neural networks having more hidden layer, or so-called more depth. These kind of nets are capable of discovering hidden structures within unlabeled and unstructured data (i.e. images, sound, and text), which is the vast majority of data in the world.

TensorFlow is one of the best libraries to implement deep learning. TensorFlow is a software library for numerical computation of mathematical expressional, using data flow graphs. Nodes in the graph represent mathematical operations, while the edges represent the multidimensional data arrays (tensors) that flow between them. It was created by Google and tailored for Machine Learning. In fact, it is being widely used to develop solutions with Deep Learning.

In this TensorFlow course, you will be able to learn the basic concepts of TensorFlow, the main functions, operations and the execution pipeline. Starting with a simple “Hello Word” example, throughout the course you will be able to see how TensorFlow can be used in curve fitting, regression, classification and minimization of error functions. This concept is then explored in the Deep Learning world. You will learn how to apply TensorFlow for backpropagation to tune the weights and biases while the Neural Networks are being trained. Finally, the course covers different types of Deep Architectures, such as Convolutional Networks, Recurrent Networks and Autoencoders.

Connect with Big Data University:

ABOUT THIS COURSE
•This course is free.
•It is self-paced.
•It can be taken at any time.
•It can be audited as many times as you wish.

Рекомендации по теме
Комментарии
Автор

Nice but what is it? Where is in the list (time is 2.04) NN / DL ? There are classic methods, no DL/NN.

AlexeyR
Автор

I like your sweet voice. It makes things easier to understand. Thank you!

MinhVu-fohd