Analyzing K-Pop Using Machine Learning | Part 3: Model Building

preview_player
Показать описание
This is part 3 of the tutorial where I build different predictive models and compare the results.

In this video, I build several regression models to predict the number of hours that K-pop fans listen to K-pop and I compare them using the Mean Absolute Error (MAE). I build linear regression, lasso regression, ridge regression, random forest, and XGBoost regression models.

For the tree-based models (random forest and XGBoost), I tune the hyper-parameters to find the optimal models.

I ended up choosing the XGBoost model as the MAE was the lowest and a tree-based model generalize the data well.


02:23 Multiple Linear Regression
05:33 Lasso Regression
08:19 Ridge Regression
09:01 Random Forest Regressor
10:47 XGBoost
12:06 Comparing Model Performances

Other Links from Import Data

#ImportData #ModelBuilding #KPop
Рекомендации по теме
Комментарии
Автор

In the next video, I'm going to talk about how to put a model into production! Stay tuned!

ImportData
Автор

Thanks for the very informative video on model building! 👍👍

DataProfessor
Автор

Finally a channel that shows and describe how to do!

TheChopticks
Автор

Great tutorial ! I definitely need to work on my model building skills to get to where your at.
Also I see your already almost at 100 subscribers !

Mario-oxdm
Автор

#ImportData #USInternationalStudent #DataScience #DataAnalysis #DataAnalytics #DataScienceUndergraduate #DataScienceJobs #DataScienceDegree #DataScienceBeginners #DataScienceAdvice #MachineLearning #DataScientist #MachineLearningEngineer #DataAnalyst #DeepLearning #internationalstudent #datasciencejobs #datascienceadvice #datascienceforbeginners #datasciencetutorials #machinelearningtutorials #deeplearningtutorials #howtolearndatascience #USInternationalStudent #internationalstudentjobs #entryleveldatascience #datascienceresume #datascienceportfolio #datascienceinterview #bigdata #NLP #sentimentanalysis #textanalytics #twitter #kaggle #dataset #csv
#수입산데이터 #미국유학생 #미국유학 #유학생취업 #미국유학생취업 #데이터사이언스 #데이터사이언스취업 #미국데이터사이언스 #데이터사이언스학위 #데이터사이언스학사 #데이터사이언스입문 #미국취업 #머신러닝 #딥러닝 #취업면접 #취업비자 #캐글 #데이터 #전공 #미국대학교 #미국학교 #인공지능 #빅데이터 #자연어처리

ImportData