filmov
tv
OCR MEI Core 4 7.05 Introducing Volumes of Revolution
![preview_player](https://i.ytimg.com/vi/oG6jFzXloMc/maxresdefault.jpg)
Показать описание
OCR MEI Core 4 4.16 An Example of Using the Scalar Product / Dot Product
OCR MEI Core 4 4.07 Finding the Vector from A to B
OCR MEI Core 4 4.05 Direction Vectors in 3D
OCR MEI Core 4 4.09 Find the Vector Equation of a Line Between Two Points
OCR MEI Core 4 3.02 Extending Binomial Expansion - where does the formula come from?
OCR MEI Core 4 4.08 The Vector Equation of a Line
OCR MEI Core 4 4.13a Determining Whether Two Lines are Parallel
OCR MEI Core 4 7.01 Harder Trigonometric Integrals
OCR MEI Core 4 2.06 Write x = t^2 and y = 4t - 1 as a Cartesian Equation
OCR MEI Core 4 1.20 Using a Double Angle Formula to Solve an Equation
OCR MEI Core 4 4.13b Determining Whether Two Lines Intersect
OCR MEI Core 3 7.09 Dealing with Definite Integrals with Integration by Substitution
OCR MEI Core 4 4.10 The Cartesian Form for an Equation of a Line
OCR MEI Core 4 2.16 An Example of Parametric Differentiation
OCR MEI Core 3 5.04 Harder Chain Rule - Differentiate exp(4x^3 - 9)
OCR MEI Core 4 4.13c Determining Whether Two Lines are Skew
OCR MEI Core 4 4.06 Finding a Unit Vector in a Particular Direction
OCR MEI Core 3 4.07 Solving a Connected Rates of Change Problem Example 1
OCR MEI Core 4 1.18 Introducing the Double Angle Formulas
OCR MEI Core 2 4.07 Examples of Integrating dy/dx
OCR MEI Core 4 2.07 Write x = t^3 - 2t^2 and y = t/2 as a Cartesian Equation
OCR MEI Core 4 1.15 Examples of Proving Trigonometric Identities
OCR MEI Core 4 1.17b Using the Compound Angle Formulas: Working Backwards
OCR MEI Core 4 4.12 Intersecting Lines in 3D: 3 Possibilities
Комментарии