Joseph Priestley's Experiment #Oxygen #Priestley

preview_player
Показать описание
#razisir

#razi_sir

#razi sir

#razi_sir_Mr

#onestepforeducation

#one_step_for_education

#one step for education

#amuic

#ameerul

#रज़ीसर

#रज़ी_सर

#अमीरूल

#mathmasti

#math_masti

#upboard2023

#exam2023

#biharboard2023

#upboardexam2023

#Joseph Priestley

#nutrition

#nutrients

#Priestley discover oxygen

What is Joseph Priestley most famous for?

How did Priestley discover oxygen?

Who really discovered oxygen?

Was JB Priestley religious?

Joseph Priestley, (born March 13, 1733, Birstall Fieldhead, near Leeds, Yorkshire [now West Yorkshire], England—died February 6, 1804, Northumberland, Pennsylvania, U.S.), English clergyman, political theorist, and physical scientist whose work contributed to advances in liberal political and religious thought and in experimental chemistry. He is best remembered for his contribution to the chemistry of gases.

Priestley was born into a family of moderately successful wool-cloth makers in the Calvinist stronghold of West Riding, Yorkshire. He entered the Dissenting Academy at Daventry, Northamptonshire, in 1752. Dissenters, so named for their unwillingness to conform to the Church of England, were prevented by the Act of Uniformity (1662) from entering English universities. Priestley received an excellent education in philosophy, science, languages, and literature at Daventry, where he became a “furious freethinker” in religion. He renounced the Calvinist doctrines of original sin and atonement, and he embraced a rational Unitarianism that rejected the Trinity and asserted the perfectibility of man.

Between 1755 and 1761, Priestley ministered at Needham Market, Suffolk, and at Nantwich, Cheshire. In 1761 he became tutor in languages and literature at the Warrington Academy, Lancashire. He was ordained a Dissenting minister in 1762. That year he married Mary Wilkinson, daughter of the ironmaster Isaac Wilkinson. They had one daughter and three sons.

Priestley’s interest in science intensified in 1765, when he met the American scientist and statesman Benjamin Franklin, who encouraged him to publish The History and Present State of Electricity, with Original Experiments (1767). In this work, Priestley used history to show that scientific progress depended more on the accumulation of “new facts” that anyone could discover than on the theoretical insights of a few men of genius. Priestley’s preference for “facts” over “hypotheses” in science was consistent with his Dissenting conviction that prejudice and dogma of any sort presented obstacles to individual inquiry and private judgment.

This view of scientific methodology shaped Priestley’s electrical experiments, in which he anticipated the inverse square law of electrical attraction, discovered that charcoal conducts electricity, and noted the relationship between electricity and chemical change. On the basis of these experiments, in 1766 he was elected a member of the Royal Society of London. This line of investigation inspired him to develop “a larger field of original experiments” in areas other than electricity.

Philosophical Transactionsdescribing his experiments on gases, or “airs,” as they were then called. British pneumatic chemists had previously identified three types of gases: air, carbon dioxide (fixed air), and hydrogen (inflammable air). Priestley incorporated an explanation of the chemistry of these gases into the phlogiston theory, according to which combustible substances released phlogiston (an immaterial “principle of inflammability”) during burning.

Priestley discovered 10 new gases: nitric oxide (nitrous air), nitrogen dioxide (red nitrous vapour), nitrous oxide (inflammable nitrous air, later called “laughing gas”), hydrogen chloride (marine acid air), ammonia (alkaline air), sulfur dioxide (vitriolic acid air), silicon tetrafluoride (fluor acid air), nitrogen (phlogisticated air), oxygen (dephlogisticated air, independently codiscovered by Carl Wilhelm Scheele), and a gas later identified as carbon monoxide. Priestley’s experimental success resulted predominantly from his ability to design ingenious apparatuses and his skill in their manipulation. He gained particular renown for an improved pneumatic trough in which, by collecting gases over mercury instead of in water, he was able to isolate and examine gases that were soluble in water. For his work on gases, Priestley was awarded the Royal Society’s prestigious Copley Medal in 1773.

ening his own spiritual views, these observations informed the photosynthesis experiments performed by his contemporaries, the Dutch physician Jan Ingenhousz and the Swiss clergyman and naturalist Jean Senebier.
Рекомендации по теме
Комментарии
Автор

Keep making these types of videos, very nice work. You should use a service such as Promo-SM.

barnabasleather
welcome to shbcf.ru