filmov
tv
Choosing the right statistical test - Population Health: Responsible Data Analysis
![preview_player](https://i.ytimg.com/vi/qZJmfD2SKK8/maxresdefault.jpg)
Показать описание
Link to this course:
Choosing the right statistical test - Population Health: Responsible Data Analysis
In most areas of health, data is being used to make important decisions. As a health population manager, you will have the opportunity to use data to answer interesting questions. In this course, we will discuss data analysis from a responsible perspective, which will help you to extract useful information from data and enlarge your knowledge about specific aspects of interest of the population.
First, you will learn how to obtain, safely gather, clean and explore data. Then, we will discuss that because data are usually obtained from a sample of a limited number of individuals, statistical methods are needed to make claims about the whole population of interest. You will discover how statistical inference, hypothesis testing and regression techniques will help you to make the connection between samples and populations.
A final important aspect is interpreting and reporting. How can we transform information into knowledge? How can we separate trustworthy information from noise? In the last part of the course, we will cover the critical assessment of the results, and we will discuss challenges and dangers of data analysis in the era of big data and massive amounts of information.
In this course, we will emphasize the concepts and we will also teach you how to effectively perform your analysis using R. You do not need to install R on your computer to follow the course, you will be able to access R and all the example data sets within the Coursera environment.
This course will become part of the to-be-developed Leiden University master program Population Health Management. If you wish to find out more about this program see the last reading of this Course!
R Programming, Data Analysis, Regression Analysis, Data Reporting, Statistical Data
To research and review the data Population Health: Responsible Data Analysis is mostly perfect to me as a humanitarian.,Had much fun during this course. Hope more programmes like this in future are offered for free.
In this module, we will see how to deal with data obtained from a limited number of individuals. You will discover how statistical inference can make the connection between samples and populations. First, we will discuss important concepts such as random variation, sampling distribution and standard error. Second, we will discuss the principles of hypothesis testing. Then, we will review the moist commonly used statistical tests. Finally, we will discuss how to decide how large your study sample should be.
Choosing the right statistical test - Population Health: Responsible Data Analysis
Copyright Disclaimer under Section 107 of the copyright act 1976, allowance is made for fair use for purposes such as criticism, comment, news reporting, scholarship, and research. Fair use is a use permitted by copyright statute that might otherwise be infringing. Non-profit, educational or personal use tips the balance in favour of fair use.
Choosing the right statistical test - Population Health: Responsible Data Analysis
In most areas of health, data is being used to make important decisions. As a health population manager, you will have the opportunity to use data to answer interesting questions. In this course, we will discuss data analysis from a responsible perspective, which will help you to extract useful information from data and enlarge your knowledge about specific aspects of interest of the population.
First, you will learn how to obtain, safely gather, clean and explore data. Then, we will discuss that because data are usually obtained from a sample of a limited number of individuals, statistical methods are needed to make claims about the whole population of interest. You will discover how statistical inference, hypothesis testing and regression techniques will help you to make the connection between samples and populations.
A final important aspect is interpreting and reporting. How can we transform information into knowledge? How can we separate trustworthy information from noise? In the last part of the course, we will cover the critical assessment of the results, and we will discuss challenges and dangers of data analysis in the era of big data and massive amounts of information.
In this course, we will emphasize the concepts and we will also teach you how to effectively perform your analysis using R. You do not need to install R on your computer to follow the course, you will be able to access R and all the example data sets within the Coursera environment.
This course will become part of the to-be-developed Leiden University master program Population Health Management. If you wish to find out more about this program see the last reading of this Course!
R Programming, Data Analysis, Regression Analysis, Data Reporting, Statistical Data
To research and review the data Population Health: Responsible Data Analysis is mostly perfect to me as a humanitarian.,Had much fun during this course. Hope more programmes like this in future are offered for free.
In this module, we will see how to deal with data obtained from a limited number of individuals. You will discover how statistical inference can make the connection between samples and populations. First, we will discuss important concepts such as random variation, sampling distribution and standard error. Second, we will discuss the principles of hypothesis testing. Then, we will review the moist commonly used statistical tests. Finally, we will discuss how to decide how large your study sample should be.
Choosing the right statistical test - Population Health: Responsible Data Analysis
Copyright Disclaimer under Section 107 of the copyright act 1976, allowance is made for fair use for purposes such as criticism, comment, news reporting, scholarship, and research. Fair use is a use permitted by copyright statute that might otherwise be infringing. Non-profit, educational or personal use tips the balance in favour of fair use.