Ex 5.5 Q1 To Q10 || lec 8 || Continuity and Differentiability || NCERT || Class 12 | Chapter 5 ||

preview_player
Показать описание


Insta I’d- Shivanggupta34

Ex 5.5 Q1 To Q17 NCERT Class 12 link :;

#logarithmicdifferentiation
#differentiation
#differentiability
#differentiability_of_functions
#differentiationformulas
#continuity
#continuityanddifferentiabilityclass12
#chapter5class12
#continuityanddifferentiability
#ex5.2 Ncert Class 12
#quotientrule
#productrule
#chainrule
Рекомендации по теме
Комментарии
Автор

hw answer is done but i m unable to write it here

vanshsharmav
Автор

To differentiate the expression \(5(n+3)^2 \cdot (n+4)^3 \cdot (n+5)^4\) with respect to \(x\), you can use the product rule of differentiation. The product rule states that if you have two functions \(u(x)\) and \(v(x)\), then the derivative of their product is given by:

\[(u \cdot v)' = u' \cdot v + u \cdot v'\]

In your case, you have three functions: \(u(x) = 5(n+3)^2\), \(v(x) = (n+4)^3\), and \(w(x) = (n+5)^4\).

Now, let's differentiate each of these functions with respect to \(n\) first:

1. \(u'(n) = 2 \cdot 5(n+3)\cdot \frac{d}{dn}(n+3) = 10(n+3)\)
2. \(v'(n) = 3(n+4)^2 \cdot \frac{d}{dn}(n+4) = 3(n+4)^2\)
3. \(w'(n) = 4(n+5)^3 \cdot \frac{d}{dn}(n+5) = 4(n+5)^3\)

Now, apply the product rule:

\[
\begin{align*}
\frac{d}{dx}\left(5(n+3)^2 \cdot (n+4)^3 \cdot (n+5)^4\right) &= 5 \cdot 10(n+3) \cdot (n+4)^3 \cdot (n+5)^4 \\
&+ 5(n+3)^2 \cdot 3(n+4)^2 \cdot (n+5)^4 \\
&+ 5(n+3)^2 \cdot (n+4)^3 \cdot 4(n+5)^3
\end{align*}
\]

Simplify each term and you'll have the derivative of the expression with respect to \(x\):

\[
\frac{d}{dx}\left(5(n+3)^2 \cdot (n+4)^3 \cdot (n+5)^4\right) = 50(n+3)(n+4)^3(n+5)^4 + 15(n+3)^2(n+4)^2(n+5)^4 + 20(n+3)^2(n+4)^3(n+5)^3
\]

This is the derivative of the given expression with respect to \(x\).

technogenix.