A beautiful math problem for advanced students | Equation Solving

preview_player
Показать описание
What do you think about this problem? If you're reading this ❤️.

Also, i want to say sorry for a bad light during 1 minute. Thank You for understanding!

Equation: a^3 + a^2 = 36

Hello My Friend ! Welcome to my channel. I really appreciate it!
@higher_mathematics

#maths #math
Рекомендации по теме
Комментарии
Автор

Soln

a³+a²=36
a³+a²=27+9
a³+a²=3³+3²
a³=3³, a²=3²
a=3 answer

salehawadh
Автор

Writting 36 as 27+9 presupposes you know the answer.

rogerphelps
Автор

A trivially simple problem for beginners. a=3 by inspection

gibbogle
Автор

a³+a² =36
a²(a+1)=36
a²(a+1)=9×4
a²>(a+1)
By way of comparison,
a²=9 and a+1=4
a=√9 and a=4–1
a=3 and a=3
Finally, a=3.
It's just a different perspective.

reneeshcr
Автор

a=1? No... a=2? No... a=3? Yes!!! Let's divide a³+a²-36 ÷ a-3 = a²+4a+12. So the other two solutions: 2a=-4±√-32, two more complex roots a=-2+i√8 and -2-i√8.

HoSza
Автор

To really solve this just write a^2(a + 1) and notice that if a were to be an integer, it’s square must divide 36, and the only squares that divide 36 are 4, 9, and 36, so a must be 2, 3, or 6, from there, check

chrisclub
Автор

This method of solving the equation begins by guessing the correct answer! Why would anyone even continue once you got 27 & 9? That's your answer right there.

Kndiani
Автор

a^3 + a^2 = (a^2)×(a + 1) = (3^2)×(3 + 1) = 9×4 = 36

MgtowRubicon
Автор

Muy interesante video sobre ecuaciones con exponentes cuadrados y cubos, muchas gracias por compartir.😊❤😊.

freddyalvaradamaranon
Автор

3 to the power 3 + 3 to the power 2 is 36. Hence value of a=3

narottamdeep
Автор

Just replace 'a' by '1/b' to cast the equation in standard form then use Cardano (Tartaglia) equation to find one root and then divide by (b-root) to find the other two!

asf
Автор

Awesome explanation. If you went with just the obvious answer you wouldn’t have found the imaginary numbers. What I want to know is why hasn’t anyone commented about the most obvious part of the video. Your crazy good hand writing. I’d love to be that legible.

Ron_DeForest
Автор

Ok. La idea es pensar. Usar los productos notables. Como tarea debe ser direccionada y contestar con explicaciones en cada proceso . Así un estudiante mejora su capacidad cognitiva.

rosbelisoropeza
Автор

If you are given that the solution is in integers, then a^2(a+1) = 36 means a is in {1, 2, 3, 6} - and process of elimination gives an answer. If you do not know that a is an integer, then you can try to identify where there are roots to a^3 + a^2 - 36 = 0 and you quickly get (a - 3)(a^2 + 4a + 12) = 0, or a = 3, -2 +/- 4✓(-2)

dneary
Автор

a = 3
3 raised to 3- 27
27 + 3 raised to 2
27 +9 - 36

hemrajparihar
Автор

Re-write the problem as a^3=(6-a)(6+a) right hand side should be factorable by a therefore 6-a = 3 => a = 3.

EnginAtik
Автор

If determinant D < 0, it mean the equation nothing the root.

rizanomurni
Автор

by faktoring, a^3+a^2 |+/-| n*a-36=0, / 3*12=36, trial n=3 /, a^3-3a^2+4a^2-12a+12a-36=0, (a-3)(a^2+4a+12)=0, a-3=0, a=3,
/// for complex, a^2+4a+12=0, ///, test, 3^2+3^2=27+9, 27+9=36, OK,
a^2+4a+12=0, a=(-4 |+/-| sqrt(16--48)/2, a=(-4 |+/-| sqrt(-32))/2, a=(-4 |+/-| sqrt(32)i)/2, a=(-4 |+/-| 2*sqrt(8)i)/2,
a= -2+sqrt(8)i, -2-sqrt(8)i, solu., a= 3, -2+sqrt(8)i, -2-sqrt(8)i,

prollysine
Автор

a³+a²=36; solution;a³+a²=36; a³+a²-36=0; a³+a²-27-9=0;a³-27+a²-9=0; a³-3³+a²-3²=0; (a-3)(a²+3²+3a)+(a-3)(a+3)=0; (a-3)[a²+9+3a+a+3]=0; a-3=0; a=3;a²+12+4a=0; a²+a+12=0; ∆=4²-4×1×12; ∆=-32; a=3; S={3}.

ressouguerrier
Автор

It can be solved by using reminder theorem in a simplified way.

bandarusatyanandachary
visit shbcf.ru