filmov
tv
Deep Learning(CS7015): Lec 8.7 Adding Noise to the inputs
Показать описание
lec08mod07
NPTEL-NOC IITM
deep learning
prof.mitesh khapra
iitmadras
nptel deep learning
Рекомендации по теме
0:07:57
Deep Learning(CS7015): Lec 1.3 The Deep Revival
0:08:39
Deep Learning(CS7015): Lec 7.6 Contractive Autoencoders
0:47:55
Deep Learning Part - II (CS7015): Lec 19.3 Setting up a Markov Chain for RBMs
0:28:09
Deep Learning(CS7015): Lec 9.3 Better activation functions
0:27:38
Deep Learning(CS7015): Lec 15.3 Attention Mechanism
0:08:10
Deep Learning(CS7015): Lec 14.3 How LSTMs avoid the problem of vanishing gradients
0:11:59
Deep Learning(CS7015): Lec 5.5 Nesterov Accelerated Gradient Descent
0:22:50
Deep Learning(CS7015): Lec 11.5 Image Classification continued (GoogLeNet and ResNet)
0:15:44
Deep Learning(CS7015): Lec 9.5 Batch Normalization
0:16:58
Deep Learning(CS7015): Lec 11.3 Convolutional Neural Networks
0:07:05
Deep Learning(CS7015): Lec 10.6 Contrastive estimation
0:20:49
Deep Learning(CS7015): Lec 11.4 CNNs (success stories on ImageNet)
0:15:24
Deep Learning Part - II (CS7015): Lec 17.3 Local Independencies in a Markov Network
0:25:42
Deep Learning(CS7015): Lec 6.4 Principal Component Analysis and its Interpretations
0:23:53
Deep Learning(CS7015): Lec 14.3 (Part-2) How LSTMs avoid the problem of vanishing gradients (Contd.)
0:02:57
Deep Learning(CS7015): Lec 11.4 (Par-2) CNNs (success stories on ImageNet) (Contd.)
0:17:07
Deep Learning Part - II (CS7015): Lec 16.4 Can we use a graph to represent a joint distribution
0:07:05
Convolutional Block Attention Module (CBAM) Paper Explained
0:10:14
12. Perceptron Learning Rule to classify given example Solve example Soft computing by Mahesh Huddar
0:13:22
Perceptron
0:10:05
Introduction to Deep Learning - Module 1 - Video 7: Sigmoidal Output Units
1:07:04
Tutorial 7 - Attention | Deep Learning on Computational Accelerators
1:34:01
Deeplearning implementation in Keras/Tensorflow for CNN/GAN/Autoencoder
1:15:18
CS480/680 Lecture 16: Convolutional neural networks