filmov
tv
UIUC CS 374 FA 20: 21.6.1. CNF, SAT, 3CNF and 3SAT
Показать описание
Sariel Har-Peled
Рекомендации по теме
0:13:16
UIUC CS 374 FA 20: 13.2. Dynamic programming
0:11:21
UIUC CS 374 FA 20: 4.2. Constructing NFAs
0:08:34
UIUC CS 374 FA 20: 5.3. Converting NFA into a regular expression - an illustrated guide
0:09:33
UIUC CS 374 FA 20: 5.1.2. Algorithms for converting NFA to DFA
0:06:30
UIUC CS 374 FA 20: 4.4. Every regular language has an NFA
0:11:31
UIUC CS 374 FA 20: 24.3.3.2. The clause gadget
0:08:13
UIUC CS 374 FA 20: 10.2. What is a good algorithm?
0:07:32
UIUC CS 374 FA 20: 3.1.2. Formal definition of DFAs
0:04:48
UIUC CS 374 FA 20: 20.6.1. Implementing Borůvka’s Algorithm
0:09:16
UIUC CS 374 FA 20: 13.1. Recursion and memoization
0:07:15
UIUC CS 374 FA 20: 23.1.2. SAT is NP-Complete
0:10:46
UIUC CS 374 FA 20: 24.4.2. The consistency of execution
0:04:24
UIUC CS 374 FA 20: 3.3. How to build a DFA for the complement language
0:05:29
UIUC CS 374 FA 20: 4.1.1 Formal definition of NFAs
0:10:01
UIUC CS 374 FA 20: 23.1.1. Completeness
0:12:49
UIUC CS 374 FA 20: 5.1. Equivalence of NFAs and DFAs (introduction)
0:03:29
UIUC CS 374 FA 20: 7.6. CFGs normal form
0:11:21
UIUC CS 374 FA 20: 8.3. Snapshots of TM execution
0:07:16
UIUC CS 374 FA 20: 23.1.3. Other NP Complete Problems
0:10:55
UIUC CS 374 FA 20: 3.1. Introduction to DFAs
0:03:56
UIUC CS 374 FA 20: 24.3.1. The coloring problem
0:09:15
UIUC CS 374 FA 20: 18.6. DFA to Regular Expression
0:32:56
UIUC CS 374 FA 20 1.4 Languages
0:09:28
UIUC CS 374 FA 20: 3.1.1 Graphical representation of DFAs
visit shbcf.ru