filmov
tv
Python for Machine Learning | Label Encoding | Preprocessing - P16

Показать описание
Python for Machine Learning | Label Encoding | Preprocessing - P16
Table of content
0:00 Introductions
00:08 What is Label Encoding
00:22 Why do we use Label Encoding
02:01 How to fill the categorical column with the modal values
02:43 Extract features and labels
03:09 Import Imputer and OneHotEncoder
03:26 Create Dataframe with only features
04:09 Label Encoding
04:14 Identify the columns on which we will apply Label Encoding
04:46 Define the object of Label Encoder
05:20 Apply Label Encoding on the respective categorical columns
05:41 Apply fit_transform on LabelEncoder()
06:14 How to create dataframe with the transformed features
Topic to be covered - Label Encoding
import pandas as pd
import numpy as np
'''Get the rows that contains NULL (NaN)'''
'''Fill the NaN values for Occupation, Emplyment Status and Employement Type'''
col = ['Occupation','Employment Status','Employement Type']
imputer = Imputer(missing_values='NaN',strategy='mean',axis=0)
'''2 step transformation
Fit and Tranform'''
'''------------------------------- L A B E L E N C O D I I N ------------------'''
encode = LabelEncoder()
All Playlist of this youtube channel
====================================
1. Data Preprocessing in Machine Learning
2. Confusion Matrix in Machine Learning, ML, AI
3. Anaconda, Python Installation, Spyder, Jupyter Notebook, PyCharm, Graphviz
4. Cross Validation, Sampling, train test split in Machine Learning
5. Drop and Delete Operations in Python Pandas
6. Matrices and Vectors with python
7. Detect Outliers in Machine Learning
8. TimeSeries preprocessing in Machine Learning
9. Handling Missing Values in Machine Learning
10. Dummy Encoding Encoding in Machine Learning
11. Data Visualisation with Python, Seaborn, Matplotlib
12. Feature Scaling in Machine Learning
13. Python 3 basics for Beginner
14. Statistics with Python
15. Sklearn Scikit Learn Machine Learning
16. Python Pandas Dataframe Operations
17. Linear Regression, Supervised Machine Learning
18 Interiew Questions on Machine Learning and Data Science
19. Jupyter Notebook Operations
Table of content
0:00 Introductions
00:08 What is Label Encoding
00:22 Why do we use Label Encoding
02:01 How to fill the categorical column with the modal values
02:43 Extract features and labels
03:09 Import Imputer and OneHotEncoder
03:26 Create Dataframe with only features
04:09 Label Encoding
04:14 Identify the columns on which we will apply Label Encoding
04:46 Define the object of Label Encoder
05:20 Apply Label Encoding on the respective categorical columns
05:41 Apply fit_transform on LabelEncoder()
06:14 How to create dataframe with the transformed features
Topic to be covered - Label Encoding
import pandas as pd
import numpy as np
'''Get the rows that contains NULL (NaN)'''
'''Fill the NaN values for Occupation, Emplyment Status and Employement Type'''
col = ['Occupation','Employment Status','Employement Type']
imputer = Imputer(missing_values='NaN',strategy='mean',axis=0)
'''2 step transformation
Fit and Tranform'''
'''------------------------------- L A B E L E N C O D I I N ------------------'''
encode = LabelEncoder()
All Playlist of this youtube channel
====================================
1. Data Preprocessing in Machine Learning
2. Confusion Matrix in Machine Learning, ML, AI
3. Anaconda, Python Installation, Spyder, Jupyter Notebook, PyCharm, Graphviz
4. Cross Validation, Sampling, train test split in Machine Learning
5. Drop and Delete Operations in Python Pandas
6. Matrices and Vectors with python
7. Detect Outliers in Machine Learning
8. TimeSeries preprocessing in Machine Learning
9. Handling Missing Values in Machine Learning
10. Dummy Encoding Encoding in Machine Learning
11. Data Visualisation with Python, Seaborn, Matplotlib
12. Feature Scaling in Machine Learning
13. Python 3 basics for Beginner
14. Statistics with Python
15. Sklearn Scikit Learn Machine Learning
16. Python Pandas Dataframe Operations
17. Linear Regression, Supervised Machine Learning
18 Interiew Questions on Machine Learning and Data Science
19. Jupyter Notebook Operations
Комментарии