filmov
tv
OCR MEI Core 2 7.19 TWO Trigonometric Identities YOU MUST LEARN
Показать описание
TLMaths
Maths
Mathematics
Teaching
Education
A-Level
Рекомендации по теме
0:05:45
OCR MEI Core 2 4.02 Estimating the Area Under a Curve using Trapeziums
0:04:26
OCR MEI Core 2 7.22 Solve 7sin^2(x) - 5sin(x) + cos^2(x) = 0 between 0 and 360 degrees
0:04:43
OCR MEI Core 2 7.15 Identifying the Period of Trigonometric Functions
0:06:21
OCR MEI Core 2 4.01 Estimating the Area Under a Curve using Rectangles
0:03:49
OCR MEI Core 2 4.16 Integration: A More Complicated Example 1
0:02:13
OCR MEI Core 2 5.16 Finding the Sum of an Arithmetic Series Example 3
0:06:11
OCR MEI Core 2 2.11 Converting between Degrees and Radians
0:04:19
OCR MEI Core 2 2.03 GCSE Recap: Vertically Opposite, Alternate, Corresponding and Allied Angles
0:01:58
OCR MEI Core 2 2.14 An Example of Finding the Area and Perimeter of a Sector
0:05:33
OCR MEI Core 2 1.05 Introducing The Laws of Logarithms
0:03:27
OCR MEI Core 3 7.07 Basic Examples of Integration by Substitution
0:04:21
OCR MEI Core 2 8.03a Finding Where a Curve is Increasing, Decreasing or Stationary
0:04:36
OCR MEI Core 1 8.09 Find the Coefficient of x^2 in (1 - 3x)^20
0:03:03
OCR MEI Core 2 7.12 Solve cos(x + 80) = 0.7 between 0 and 360 degrees
0:02:20
OCR MEI Core 1 2.09 Finding the Equation of a Line through Two Points
0:03:26
OCR MEI Core 4 2.17 Parametric Differentiation: Finding the Equation of a Tangent
0:06:19
OCR MEI Core 2 6.08 Identifying Transformations: which is which?
0:08:19
OCR MEI Core 2 7.11 Solve sin(x + 70) = 0.6 between 0 and 360 degrees
0:02:19
OCR MEI Core 2 6.02 Graph Transformations: An Exam-Style Translation Question
0:04:39
OCR MEI Core 2 8.09 Using the Second Derivative to Identify Maxima and Minima
0:02:54
OCR MEI Core 4 2.07 Write x = t^3 - 2t^2 and y = t/2 as a Cartesian Equation
0:04:47
OCR MEI Core 1 1.12 Introducing Rationalising the Denominator Part 2
0:02:20
OCR MEI Core 4 2.16 An Example of Parametric Differentiation
0:02:07
OCR MEI Core 2 2.12 Sectors: Deriving a formula for Arc Length in Radians