Data Handling in Python: CSV Files, Missing Values, and DataFrames!

preview_player
Показать описание
"📊 Ready to take your Python data skills to the next level? In this video, we’ll dive into the essential data handling techniques for beginners and aspiring data engineers:

✅ Learn how to read CSV files with different delimiters (,, |, ;).
✅ Handle missing values with ease—fill defaults or drop rows/columns.
✅ Combine datasets with mismatched column names and align them seamlessly.
✅ Explore practical examples using a sample dataset (id, name, age).

This tutorial covers:
1️⃣ Creating and exporting CSV files in Python.
2️⃣ Loading and inspecting datasets using Pandas.
3️⃣ DataFrame operations like concatenation and missing value management.

🎯 Perfect for students, data enthusiasts, and anyone getting started with Python for data handling!

🔗 Download sample files and code: [Link to GitHub or Resources]

✨ Subscribe for more data engineering tutorials and insights!"

Let me know if you want this adjusted for a specific style or audience!

#pythonfordataanalysis
#pythonfordataanalysispdf
#exploratorydataanalysis
#NumPy
#DataAnalysisWithPython
#PythonForBeginners
#LearnNumPy
#PythonTutorial
#DataScience
#NumPyBasics
#DataManipulation
#PythonProgramming
#NumericalComputing
#NumPyTutorial
#PythonDataAnalysis
Рекомендации по теме
visit shbcf.ru