Let \( a, b, c, p, q \) be real numbers. Suppose \( \alpha, \beta \...

preview_player
Показать описание
Let \( a, b, c, p, q \) be real numbers. Suppose \( \alpha, \beta \) are roots of the equation \( x^{2}+2 p x+q=0 \) and \( \alpha, \frac{1}{\beta} \) are the roots of
\( \mathrm{P} \) the equation \( a x^{2}+2 b x+c=0 \), where \( \beta^{2} \notin\{-1,0,1\} \).

W
Statement-1 \( \left(p^{2}-q\right)\left(b^{2}-a c\right) \geq 0 \) and
Statement-2 \( b \neq p a \) or \( c \neq q a \)
[IIT-JEE 2008, 3M]
(a) Statement-1 is true, Statement-2, is true; Statement-2 is a correct explanation for Statement-1
(b) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1
(c) Statement-1 is true, Statement-2 is false
(d) Statement-1 is false, Statement-2 is true
Рекомендации по теме