filmov
tv
P If \( \alpha, \beta, \gamma, \delta \) are the roots of the equat...

Показать описание
P
If \( \alpha, \beta, \gamma, \delta \) are the roots of the equation \( x^{4}-\mathrm{Kx}^{3}+\mathrm{Kx}^{2}+\mathrm{Lx}+\mathrm{M}=0 \), where \( \mathrm{K}, \mathrm{L} \& \mathrm{M} \) are real numbers,
W then the minimum value of \( \alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2} \) is \( -\mathrm{n} \). Find the value of \( \mathrm{n} \).
If \( \alpha, \beta, \gamma, \delta \) are the roots of the equation \( x^{4}-\mathrm{Kx}^{3}+\mathrm{Kx}^{2}+\mathrm{Lx}+\mathrm{M}=0 \), where \( \mathrm{K}, \mathrm{L} \& \mathrm{M} \) are real numbers,
W then the minimum value of \( \alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2} \) is \( -\mathrm{n} \). Find the value of \( \mathrm{n} \).