IIT JEE INTEGRALS Let `f: RvecR` be a continuous odd function, which vanishes exactly at one poin...

preview_player
Показать описание

Let `f: RvecR`
be a continuous odd function, which vanishes exactly at one point and `f(1)=1/2dot`
Suppose that
`F(x)=int_(-1)^xf(t)dtfora l lx in [-1,2]a n dG(x)=int_(-1)^x t|f(f(t))|dtfora l lx in [-1,2]dotIf(lim)_(xvec1)(F(x))/(G(x))=1/(14),`

Then the value of `f(1/2)`
is

==== SCORE 100% WITH DOUBTNUT ====

Doubtnut ऍप पर आप कक्षा ६ से १२ (IIT JEE तक) के NCERT and IIT JEE Mains & Advanced के मैथ/गणित के सभी सवालों के वीडियो देखिये और मुफ्त में खोजिये किसी भी गणित सवाल का जवाब - १ लाख से भी ज़्यादा सवालों के जवाब हैं Doubtnut ऍप पर.

Doubtnut App has video solutions of ALL the NCERT questions from Class 6 to 12 (including IIT JEE). You can also ask any Math question and get a video solution for FREE from a library of more than 1 Lakh Math Videos.

#jeemains2019 #iitjeemaths #cengage #cengagemaths #cengagesolution #jeemains.

==== FOLLOW US ON====

Рекомендации по теме