Juan Luis Cano Rodríguez - Expressive & fast dataframes in Python with polars | PyData Global 2022

preview_player
Показать описание

The pandas library is one of the key factors that enabled the growth of Python in the Data Science industry and continues to help data scientists thrive almost 15 years after its creation. Because of this success, nowadays several open-source projects claim to improve pandas in various ways, either by bringing it to a distributed computing setting (Dask), accelerating its performance with minimal changes (Modin), or offering slightly different API that solves some of its shortcomings (Polars).

In this talk we will dive into Polars, a new dataframe library backed by Arrow and Rust that offers an expressive API for dataframe manipulation with excellent performance.

If you are a seasoned pandas user willing to explore alternatives, or a beginner user wondering what all the fuzz about these new dataframe libraries is, this talk is for you!

PyData is an educational program of NumFOCUS, a 501(c)3 non-profit organization in the United States. PyData provides a forum for the international community of users and developers of data analysis tools to share ideas and learn from each other. The global PyData network promotes discussion of best practices, new approaches, and emerging technologies for data management, processing, analytics, and visualization. PyData communities approach data science using many languages, including (but not limited to) Python, Julia, and R.

PyData conferences aim to be accessible and community-driven, with novice to advanced level presentations. PyData tutorials and talks bring attendees the latest project features along with cutting-edge use cases.

00:00 Welcome!
00:10 Help us add time stamps or captions to this video! See the description for details.

Рекомендации по теме
join shbcf.ru