Data Preprocessing in AI/ML - Part 2: A Guide for AI Enthusiasts (All about AI) - Machine Learning

preview_player
Показать описание
Welcome to this 2nd part of comprehensive guide on Data preprocessing in AI and Machine learning! In this video, we're diving into the essential techniques that transform raw data into a clean, efficient format ready for building powerful machine learning models. Whether you're a beginner or an experienced practitioner, understanding these preprocessing steps is crucial for achieving high-performing results.
What You'll Learn:
1. Data Scaling:
Discover why scaling your data is a vital step in preprocessing. Properly scaled data ensures that features contribute equally to the model's learning process and prevents issues related to different units or scales.
2. Data Transformation:
Understand the importance of transforming your data to enhance model accuracy and interpretability. Data transformation can make patterns more visible and relationships more linear, aiding better predictions.
3. Categorical Data Encoding:
Categorical variables often need special treatment. Learn how encoding these variables properly can provide valuable signals to your models and improve predictive power.
4. Data Reduction:
Learn how to simplify your datasets without losing critical information. Data reduction techniques help you manage large datasets more effectively, speed up your computations, and improve model performance.

data preprocessing, machine learning, data reduction, principal component analysis, PCA, linear discriminant analysis, LDA, t-SNE, t-Distributed Stochastic Neighbor Embedding, feature selection, recursive feature elimination, RFE, data scaling, standardization, Min-Max scaling, normalization, robust scaling, data transformation, log transformation, Box-Cox transformation, polynomial features, data normalization, scaling techniques, feature scaling, machine learning preprocessing, data encoding, categorical data encoding, one-hot encoding, label encoding, target encoding, leave-one-out encoding, frequency encoding, ordinal encoding, encoding techniques, data cleaning, data preparation, feature engineering, data preprocessing tutorial, data preprocessing techniques, preprocessing in machine learning, data science, preprocessing steps, data transformation methods, feature extraction, data reduction methods, preprocessing for machine learning, data manipulation, data wrangling, data analysis, data mining, machine learning pipeline, ML preprocessing, data preprocessing Python, preprocessing code examples, data preprocessing video, YouTube data science, data preprocessing steps, preprocessing methods, data preprocessing guide, data reduction techniques, feature selection methods, encoding categorical variables, data scaling methods, preprocessing tips, ML model performance, data transformation techniques, preprocessing machine learning, data preprocessing best practices, preprocessing for better models, data science tutorial, data preprocessing code, preprocessing for data science, feature engineering techniques, scaling in machine learning, encoding in machine learning

#datapreprocessing, #machinelearning, #datareduction, #principalcomponentanalysis, #PCA, #lineardiscriminantanalysis, #LDA, #tSNE, #tDistributedStochasticNeighborEmbedding, #featureselection, #recursivefeatureelimination, #RFE, #datascaling, #standardization, #MinMaxscaling, #normalization, #robustscaling, #datatransformation, #logtransformation, #BoxCoxtransformation, #polynomialfeatures, #datanormalization, #scalingtechniques, #featurescaling, #machinelearningpreprocessing, #dataencoding, #categoricaldataencoding, #onehotencoding, #labelencoding, #targetencoding, #leaveoneoutencoding, #frequencyencoding, #ordinalencoding, #encodingtechniques, #datacleaning, #datapreparation, #featureengineering, #datapreprocessingtutorial, #datapreprocessingtechniques, #preprocessinginmachinelearning, #datascience, #preprocessingsteps, #datatransformationmethods, #featureextraction, #datareductionmethods, #preprocessingformachinelearning, #datamanipulation, #datawrangling, #dataanalysis, #datamining, #machinelearningpipeline, #MLpreprocessing, #datapreprocessingPython, #preprocessingcodeexamples, #datapreprocessingvideo, #YouTubeDataScience, #datapreprocessingsteps, #preprocessingmethods, #datapreprocessingguide, #datareductiontechniques, #featureselectionmethods, #encodingcategoricalvariables, #datascalingmethods, #preprocessingtips, #MLmodelperformance, #datatransformationtechniques, #preprocessingmachinelearning, #datapreprocessingbestpractices, #preprocessingforbettermodels, #datasciencetutorial, #datapreprocessingcode, #preprocessingfordatascience, #featureengineeringtechniques, #scalinginmachinelearning, #encodinginmachinelearning
Рекомендации по теме