How to solve this nice math Exponential algebra problem | Olympiad Question | x=?,y=?

preview_player
Показать описание
#exponents#olympiad#rational #maths #algebra #integral#rational
math olympiad algebra problem,nice algebra problem,math olympiad questions,math olympiad problems,math olympiad algebra,math olympiad question,math olympiad preparation,math olympiad,math olympiad problem,algebra problem,math problems,algebra problems,learn how to solve exponential equation quickly,olympiad math problems,olympiad mathematics,algebra,a nice algebra problem,algebra math olympiad,viral math olympiad problem
Рекомендации по теме
Комментарии
Автор

The equation is quadratic in x with discriminant 4y^2+4y-4*144. To admit a real solution, the discriminant must be non-negative, implying that y>=7. When y=7, the quadratic has x=2.2736 as its only positive root, implying that x=1 or x=2. Substituting, we find that only x=2 admits an integer solution x=2, y=8.

Celtigar
Автор

(20)+2xy+(22)=44 (10^10)+2xy+(11^11) (5^5^5^5)+2xy+(5^6^5^6) (3^1^2^1) (32) (xy ➖ 3xy+2).

RealQinnMalloryu
Автор

Easy way to solve this equation
X² + 25XY +Y = 44
X² + 2XY +Y² -Y² + y =44
(X+Y)² - (Y² -Y) =44.

(X+Y)² - (Y² - 2.Y.(1/2)
+(1/2)² +(1/2)² = 44

(X+Y)² -(Y-1/2)²=44 -1/4
(X+Y+Y -1/2)(X+Y -Y+1/2) = 175/4

(X +2Y -1/2)(X +1/2)=175)4
4(X+2Y -1)(X+1/2) =175
(2X +4Y -1)(2X+1) =175
From here you can proceed as you have done.
Thanks

ArwindSah
join shbcf.ru