filmov
tv
Find \( \frac{d y}{d x} \), when: \( \mathrm{P} \) \[ y=(\tan x)^{\...
Показать описание
Find \( \frac{d y}{d x} \), when:
\( \mathrm{P} \)
\[
y=(\tan x)^{\cot x}
\]
PW Solutions
pw
Рекомендации по теме
0:05:39
Find \( \frac{d y}{d x} \) in the following cases: \[ (\cos x)^{y}=(\sin y)^{x} \]
0:03:48
Find the solution:\frac{dx}{dy}+\frac{x}{y}=\frac{1}{\sqrt{1+y^2}} | Plainmath
0:01:30
Calculating derivatives Find dy dx for the following functions. y=\frac{\sin x}{1+\ ... | Plainmath
0:02:57
Find \( \frac{d y}{d x} \) in the following cases: \( y=x^{y} \)
0:00:24
😳 CLEAN BASIC CALCULUS Differentiate d/dx(xy)=? #Shorts
0:03:43
[Math] find-dydx-by-implicit-differentiation-frac-x2x-y-y2-1
0:07:15
Find \( \frac{d y}{d x} \) in the following cases: \( y=x^{x^{x}} \)
0:00:59
Find the indicated derivatives.\frac{dy}{dx}\ if\ y=2x^{3} | Plainmath
0:01:03
Find \frac{dy}{dx} using the rules for finding derivatives.y=(2x^{2}-6)(8x^{2}-9x+9) | Plainmath
0:03:01
[Math] find-dydx-by-implicit-differentiation-tan-x-y-frac-y1-x2
0:03:24
Find \( \frac{d y}{d x} \) in the following ( 1 to 4\( ) \) : \( x^{2}+y^{2}=25 \)
0:03:44
Find \( \frac{d y}{d x} \) in the questions when: \( x=e^{t}(\sin t+\cos t), y=e^{t}(\sin t-\cos...
0:01:25
Calculating derivatives Find dy dx for the following functions. y=\frac{1-\cos x}{1+ ... | Plainmath
0:01:32
Calculating derivatives Find dy dx for the following functions.y=\frac{1}{2+\sin x} | Plainmath
0:02:11
\( x y=c^{2} \), then \( \frac{d y}{d x} \) equals : \( \mathrm{P} ...
0:01:18
Second derivatives Find \frac{d^{2}y}{dx^{2}}.x+y^{2}=1 | Plainmath
0:03:32
Derivatives - Differentiation - Solved Example - Find dy/dx if y = (x+2)²/(x²+5x+6)
0:03:37
Find \( \frac{d y}{d x} \), if \[ x^{3}+y^{3}=3 a x y \]
0:06:27
Find \( \frac{d y}{d x} \) in each of the following \[ y^{3}-3 x y^{2}=x^{3}+3 x^{2} y \]
0:01:22
Find \frac{dy}{dx} in xy = x+y | Plainmath
0:03:03
y=(secx+tan x}, then find frac{dy}{dx}
0:02:01
If \( y=x|x| \), find \( \frac{d y}{d x} \) for \( x0 \).
0:05:18
Find \( \frac{d y}{d x} \), when: \( x y \log (x+y)=1 \)
0:06:46
Find \( \frac{d y}{d x} \), when \( x=\frac{3 a t}{1+t^{2}} \) and \( y=\frac{3 a t^{2}}{1+t^{2}} \)
welcome to shbcf.ru